Tech Mining: Exploiting New Technologies for Competitive Advantage
Alan L. Porter, Scott W. Cunningham
- 出版商: Wiley
- 出版日期: 2004-10-01
- 定價: $4,350
- 售價: 8.5 折 $3,698
- 語言: 英文
- 頁數: 408
- 裝訂: Hardcover
- ISBN: 047147567X
- ISBN-13: 9780471475675
-
相關分類:
大數據 Big-data
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,500$2,375 -
$980$774 -
$880$695 -
$650$514 -
$590$466 -
$690$538 -
$1,078Machine Learning (IE-Paperback)
-
$480$379 -
$580$199 -
$880Wi-Foo : The Secrets of Wireless Hacking (Paperback)
-
$620$490 -
$522Creating a Self-Tuning Oracle Database: Automating Oracle9i Dynamic SGA Performance
-
$960High Quality Low Cost Software Inspections
-
$1,980$1,881 -
$199How to Become a Highly Paid Corporate Programmer
-
$640Thinking About GIS: Geographic Information System Planning for Managers
-
$650$507 -
$680$646 -
$1,120$1,098 -
$850$672 -
$620$490 -
$1,540$1,463 -
$3,750$3,563 -
$1,240$1,178 -
$2,980$2,831
相關主題
商品描述
Description:
Tech Mining makes exploitation of text databases meaningful to those who can gain from derived knowledge about emerging technologies. It begins with the premise that we have the information, the tools to exploit it, and the need for the resulting knowledge.
The information provided puts new capabilities at the hands of technology managers. Using the material present, these managers can identify and access the most valuable technology information resources (publications, patents, etc.); search, retrieve, and clean the information on topics of interest; and lower the costs and enhance the benefits of competitive technological intelligence operations.
Table of Contents:
List of Figures.
Preface.
Acknowledgments.
Acronyms & Shorthands—Glossary.
PART I. UNDERSTAND TECH MINING.
Chapter 1. Technological Innovation and the Need for Tech Mining.
1.1 Why Innovation is Significant.
1.2 Innovation Processes.
1.3 Innovation Institutions and Their Interests.
1.4 Innovators and Their Interests.
1.5 Technological Innovation in an Information Age.
1.6 Information About Emerging Technologies.
Chapter 1 Take-Home Messages.
Chapter Resources.
Chapter 2. How Tech Mining Works.
2.1 What is Tech Mining?
2.2 Why Do Tech Mining?
2.3 What Is Tech Mining’s Ancestry?
2.4 How to Conduct the Tech Mining Process?
2.5 Who Does Tech Mining?
2.6 Where Is Tech Mining Most Needed?
Chapter 2 Take-Home Messages.
Chapter Resources.
Chapter 3. What Tech Mining Can Do for You.
3.1 Tech Mining Basics.
3.2 Tech Mining Analyses.
3.3 Putting Tech Mining Information to Good Use.
3.4 Managing and Measuring Tech Mining.
Chapter 3 Take-Home Messages.
Chapter 4. Example Results: Fuel Cells Tech Mining.
4.1 Overview of Fuel Cells.
4.2 Tech Mining Analyses.
4.3 Tech Mining Results.
4.4 Tech Mining Information Processes.
4.5 Tech Mining Information Products.
Chapter 4 Take-Home Messages.
Chapter Resources.
Chapter 5. What to Watch For in Tech Mining.
5.1 Better Basics.
5.2 Research Profiling and Other Perspectives on the Data.
5.3 More Informative Products.
5.4 Knowledge Discovery.
5.5 Knowledge Management.
5.6 New Tech Mining Markets.
5.7 Dangers.
Chapter 5 Take-Home Messages.
Chapter Resources.
PART II. DOING TECH MINING.
Chapter 6. Finding the Right Sources.
6.1 R&D Activity.
6.2 R&D Output Databases.
6.3 Determining the Best Sources.
6.4 Arranging Access to Databases.
Chapter 6 Take-Home Messages.
Chapter Resources.
Chapter 7. Forming the Right Query.
7.1 An Iterative Process.
7.2 Queries Based on Substantive Terms.
7.3 Nominal Queries.
7.4 Tactics and Strategies for Query Design.
7.5 Changing the Query.
Chapter 7 Take-Home Messages.
Chapter 8. Getting the Data.
8.1 Accessing Databases.
8.2 Search and Retrieval from a Database.
8.3 What to Do, and Not to Do.
Chapter 8 Take-Home Messages.
Chapter 9. Basic Analyses.
9.1 In the Beginning.
9.2 What You Can Do with the Data.
9.3 Relations Among Documents and Terms Occurring in Their Information Fields.
9.4 Relationships.
9.5 Helpful Basic Analyses.
Chapter 9 Take-Home Messages.
Chapter 10. Advanced Analyses.
10.1 Why Perform Advanced Analyses?
10.2 Data Representation.
10.3 Analytical Families.
Chapter 10 Take-Home Messages.
Chapter Resources.
Chapter 11. Trend Analyses.
11.1 Perspective.
11.2 An Example Time Series Description and Forecast.
11.3 Multiple Forecasts.
11.4 Research Fronts.
11.5 Novelty.
Chapter 11 Take-Home Messages.
Chapter Resources.
Chapter 12. Patent Analyses.
12.1 Why patent Analyses?
12.2 Getting Started.
12.3 The ‘What’ and ‘Why’ of patent Analysis.
12.4 Tech Mining Patent Analysis Case Illustration: Fuel Cells.
12.5 Patent Citation Analysis.
12.6 For Whom?
12.7 TRIZ.
12.8 Reflections.
Chapter 12 Take-Home Messages.
Chapter Resources.
Chapter 13. Generating and Presenting Innovation Indicators.
13.1 Expert Opinion in Tech Mining.
13.2 Innovation Indicators.
13.3 Information Representation and Packaging.
13.4 Examples of Putting Tech Mining Information Representation to Use.
13.5 Summing Up.
Chapter Resources.
Chapter 14. Managing the Tech Mining Process.
14.1 Tough Challenges.
14.2 Tech Mining Communities.
14.3 Process Management.
14.4 Enhancing the Prospects of Tech Mining Utilization.
14.5 Institutionalizing the Tech Mining Function.
14.6 The Learning Curve.
Chapter 14 Take-Home Messages.
Chapter 15. Measuring Tech Mining Results.
15.1 Why Measure?
15.2 What to Measure.
15.3 How to Measure.
15.4 Enabling Measurement.
15.5 Effective Measurement.
15.6 Using Measurements to Bolster Tech Mining.
Chapter 15 Take-Home Messages.
Chapter Resources.
Chapter 16. Examples Process: Tech Mining on Fuel Cells.
16.1 Introduction.
16.2 First Step: Issue Identification.
16.3 Second Step: Selection of Information Sources.
16.4 Third Step: Search Refinement and Data Retrieval.
16.5 Fourth Step: Data Cleaning.
16.6 Fifth Step: Basic Analyses.
16.7 Sixth Step: Advanced Analyses.
16.8 Seventh Step: Representation.
16.9 Eight Step: Interpretation.
16.10 Ninth Step: Utilization.
16.11 What Can We Learn.
Chapter 6 Take-Home Messages.
Chapter Resources.
Appendix A: Selected Publication and patent Databases.
Appendix B: Text Mining Software.
Appendix C: What You Can Do Without Tech Mining Software.
Appendix D: Statistics and Distributions for Analyzing Text Entities.
References.
Index.
商品描述(中文翻譯)
描述:
Tech Mining使得對於那些可以從衍生知識中獲益的人來說,對於文本數據庫的開發變得有意義。它的前提是我們擁有信息、利用它的工具以及對所得知識的需求。提供的信息使得技術經理能夠掌握新的能力。利用這些材料,這些經理可以識別和訪問最有價值的技術信息資源(出版物、專利等),搜索、檢索和清理感興趣的主題的信息,降低競爭技術情報操作的成本並增強效益。
目錄:
圖表清單。
前言。
致謝。
縮寫和簡寫詞彙-詞彙表。
第一部分。了解技術挖掘。
第1章。技術創新和技術挖掘的需求。
1.1 為什麼創新很重要。
1.2 創新過程。
1.3 創新機構及其利益。
1.4 創新者及其利益。
1.5 信息時代的技術創新。
1.6 關於新興技術的信息。
第1章要點。
第1章資源。
第2章。技術挖掘的工作原理。
2.1 什麼是技術挖掘?
2.2 為什麼要進行技術挖掘?
2.3 技術挖掘的起源是什麼?
2.4 如何進行技術挖掘過程?
2.5 誰在進行技術挖掘?
2.6 哪裡最需要技術挖掘?
第2章要點。
第2章資源。
第3章。技術挖掘對您有何幫助。
3.1 技術挖掘基礎知識。
3.2 技術挖掘分析。
3.3 將技術挖掘信息應用於實際。
3.4 管理和衡量技術挖掘。
第3章要點。
第3章資源。
第4章。示例結果:燃料電池技術挖掘。
4.1 燃料電池概述。
4.2 技術挖掘分析。
4.3 技術挖掘結果。
4.4 技術挖掘信息過程。
4.5 技術挖掘信息產品。
第4章要點。
第4章資源。