Introduction to Clustering Large and High-Dimensional Data
暫譯: 大型與高維數據聚類導論
Jacob Kogan
- 出版商: Cambridge
- 出版日期: 2006-11-13
- 售價: $2,720
- 貴賓價: 9.5 折 $2,584
- 語言: 英文
- 頁數: 222
- 裝訂: Hardcover
- ISBN: 0521852676
- ISBN-13: 9780521852678
-
相關分類:
Data-mining、Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,060$1,039 -
$590$561 -
$450$356 -
$900$882 -
$550$468 -
$1,127Database System Concepts, 5/e (IE) (美國版ISBN:0072958863)
-
$680$537 -
$680$578 -
$599$473 -
$520$442 -
$680$578 -
$550$468 -
$450$383 -
$680$537 -
$1,274Data Mining: Concepts and Techniques, 2/e (IE-Paperback)
-
$600$474 -
$690$587 -
$1,560$1,326 -
$300$237 -
$290$226 -
$600$480 -
$450$383 -
$650$553 -
$540$427 -
$1,200$1,020
相關主題
商品描述
Description
There is a growing need for a more automated system of partitioning data sets into groups, or clusters. For example, digital libraries and the World Wide Web continue to grow exponentially, the ability to find useful information increasingly depends on the indexing infrastructure or search engine. Clustering techniques can be used to discover natural groups in data sets and to identify abstract structures that might reside there, without having any background knowledge of the characteristics of the data. Clustering has been used in a variety of areas, including computer vision, VLSI design, data mining, bio-informatics (gene expression analysis), and information retrieval, to name just a few. This book focuses on a few of the most important clustering algorithms, providing a detailed account of these major models in an information retrieval context. The beginning chapters introduce the classic algorithms in detail, while the later chapters describe clustering through divergences and show recent research for more advanced audiences.
• Rather than providing comprehensive coverage of the area, the book focuses on a few important clustering algorithms • A detailed and elementary description of the algorithms is provided in the beginning chapters, to be easily absorbed by undergraduates • Recent research results involving sophisticated mathematics are of interest for graduate students and research experts.
Table of Contents
1. Introduction and motivation;
2. Quadratic k-means algorithm;
3. BIRCH;
4. Spherical k-means algorithm;
5. Linear algebra techniques;
6. Information-theoretic clustering;
7. Clustering with optimization techniques;
8. k-means clustering with divergence;
9. Assessment of clustering results;
10. Appendix: Optimization and Linear Algebra Background;
11. Solutions to selected problems.
商品描述(中文翻譯)
**描述**
隨著對於將資料集自動分群或聚類的需求日益增加,數位圖書館和全球資訊網持續以指數方式增長,尋找有用資訊的能力越來越依賴於索引基礎設施或搜尋引擎。聚類技術可以用來發現資料集中的自然群組,並識別可能存在的抽象結構,而無需對資料的特徵有任何背景知識。聚類已被應用於多個領域,包括計算機視覺、VLSI 設計、資料挖掘、生物資訊學(基因表達分析)和資訊檢索等。本書專注於幾個最重要的聚類演算法,提供這些主要模型在資訊檢索背景下的詳細說明。前幾章詳細介紹了經典演算法,而後面的章節則通過發散來描述聚類,並展示針對更高級讀者的最新研究成果。
- 本書並非全面涵蓋該領域,而是專注於幾個重要的聚類演算法
- 在前幾章中提供了演算法的詳細且基礎的描述,以便本科生能夠輕鬆吸收
- 涉及複雜數學的最新研究結果對於研究生和研究專家具有興趣。
**目錄**
1. 介紹與動機;
2. 二次 k-means 演算法;
3. BIRCH;
4. 球形 k-means 演算法;
5. 線性代數技術;
6. 資訊理論聚類;
7. 使用優化技術的聚類;
8. 具有發散的 k-means 聚類;
9. 聚類結果的評估;
10. 附錄:優化與線性代數背景;
11. 選定問題的解答。