Algebraic Geometry and Statistical Learning Theory (Hardcover)
暫譯: 代數幾何與統計學習理論 (精裝版)
Sumio Watanabe
- 出版商: Cambridge
- 出版日期: 2009-08-13
- 售價: $4,030
- 貴賓價: 9.5 折 $3,829
- 語言: 英文
- 頁數: 300
- 裝訂: Hardcover
- ISBN: 0521864674
- ISBN-13: 9780521864671
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
數學女孩─費馬最後定理$340$289 -
數學女孩─哥德爾不完備定理$399$339 -
數學女孩─隨機演算法$450$356 -
$474自製編程語言 -
$474獨闢蹊徑的編程思維-拿來主義編程 -
Functional Thinking: Paradigm Over Syntax (Paperback)$1,311$1,242 -
How Linux Works: What Every Superuser Should Know, 2/e (Paperback)$1,550$1,473 -
Docker 入門與實戰$450$356 -
$359計算機是怎樣跑起來的 (How Computer Works) -
不一樣的 Node.js:用 JavaScript 打造高效能的前後台網頁程式, 2/e$490$387 -
Learning iOS UI Development(Paperback)$1,290$1,226 -
Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems (Paperback)$1,995$1,890 -
超圖解 Arduino 互動設計入門, 4/e$680$578
商品描述
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
商品描述(中文翻譯)
確實會產生影響,渡邊的書籍為代數幾何在統計學習理論中的應用奠定了基礎。許多模型/機器都是奇異的:混合模型、神經網絡、隱馬可夫模型(HMMs)、貝葉斯網絡、隨機上下文無關文法是主要的例子。這裡所達成的理論支撐了在存在奇異性時的準確估計技術。
