買這商品的人也買了...
-
A Computational Introduction to Number Theory and Algebra (Hardcover)$1,250$1,225 -
Handbook of Linear Algebra (Hardcover)(書況較舊,書側有些許黴斑)$1,850$1,813 -
Engineering Optimization: methods and applications, 2/e (Hardcover)$6,640$6,308 -
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281 -
不再聽不懂!圖解網站建置與開發$450$356 -
Statistical Inference: An Integrated Approach, 2/e (Hardcover)$1,600$1,568 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
Python 技術者們 - 實踐! 帶你一步一腳印由初學到精通$650$553 -
設計師都該懂的包容性網頁 UI/UX 設計模式:知名設計師教你親和性網頁的實作祕密$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
JavaScript 技術手冊$560$476 -
PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425 -
Introduction to Linear Regression Analysis, 6/e (Hardcover)$1,680$1,646 -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
$1,423機器學習:貝葉斯和優化方法, 2/e (Machine Learning : A Bayesian and Optimization Perspective, 2/e) -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
$653概率圖模型原理與應用, 2/e -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
計算貝葉斯統計導論$534$507 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
$862機器學習中的一階與隨機優化方法
相關主題
商品描述
Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.
商品描述(中文翻譯)
計算能力的爆炸性增長使得無限維模型的貝葉斯方法——貝葉斯非參數法,成為一個幾乎通用的推斷框架,並在許多學科領域中找到了實際應用。本書由領先的研究者撰寫,基於過去二十年的理論進展,綜合了貝葉斯非參數法的各個方面,從先驗構建到後驗的計算和大樣本行為。由於理解後驗的行為對於選擇有效的先驗至關重要,因此大樣本理論系統地發展,並通過各種模型和先驗組合的例子進行說明。提供了精確的充分條件,並附有完整的證明,以確保所需的後驗性質和行為。每章結尾都有歷史註釋和大量練習題,以加深和鞏固讀者的理解,使本書對於統計學和機器學習的研究生及研究人員,以及計量經濟學和生物統計學等應用領域的專業人士都具有價值。
