The Ambient Metric
暫譯: 環境度量

Fefferman, Charles, Graham, C. Robin

  • 出版商: Princeton University Press
  • 出版日期: 2011-12-04
  • 售價: $3,570
  • 貴賓價: 9.5$3,392
  • 語言: 英文
  • 頁數: 128
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0691153140
  • ISBN-13: 9780691153148
  • 相關分類: 工程數學 Engineering-mathematics
  • 海外代購書籍(需單獨結帳)

商品描述

This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincar metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics.

The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincar metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincar metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.

商品描述(中文翻譯)

這本書發展並應用了一種在共形幾何中的環境度量理論。這是一種在 n+2 維度中的洛倫茲度量,編碼了 n 維度中的共形度量類。環境度量有另一種形式,即庞加莱度量(Poincaré metric),這是一種在 n+1 維度中的度量,其共形無窮遠為共形流形。在這種實現中,該構造在物理學中的 AdS/CFT 對應中扮演了核心角色。

環境度量在形式冪級數層面的存在性和唯一性被詳細處理。這包括環境障礙張量的推導以及對共形平坦和共形愛因斯坦空間的特殊情況的明確分析。引入了庞加莱度量,並顯示其與環境表述是等價的。四維中的自對偶庞加莱度量被視為一個特殊情況,導致了 LeBrun 的領域鄰域定理的形式冪級數證明,該定理最初是使用扭子方法證明的。引入了共形曲率張量並建立了其基本性質。為共形幾何建立了一個噴射同構定理,結果是以共形曲率張量表示共形結構在某一點的噴射空間。書的最後以環境曲率的形式構造和特徵化標量共形不變量,應用於拋物不變理論中的結果。

作者簡介

Charles Fefferman is the Herbert E. Jones, Jr., '43 University Professor of Mathematics at Princeton University. C. Robin Graham is professor of mathematics at the University of Washington.

作者簡介(中文翻譯)

查爾斯·費佛曼(Charles Fefferman)是普林斯頓大學的赫伯特·E·瓊斯(Herbert E. Jones, Jr.)數學大學教授。C·羅賓·格雷厄姆(C. Robin Graham)是華盛頓大學的數學教授。