Methods and Applications of Autonomous Experimentation
暫譯: 自主實驗的方法與應用

Noack, Marcus, Ushizima, Daniela

  • 出版商: CRC
  • 出版日期: 2025-07-30
  • 售價: $2,570
  • 貴賓價: 9.5$2,442
  • 語言: 英文
  • 頁數: 402
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032417536
  • ISBN-13: 9781032417530
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Autonomous Experimentation is poised to revolutionize scientific experiments at advanced experimental facilities. Whereas previously, human experimenters were burdened with the laborious task of overseeing each measurement, recent advances in mathematics, machine learning and algorithms have alleviated this burden by enabling automated and intelligent decision-making, minimizing the need for human interference. Illustrating theoretical foundations and incorporating practitioners' first-hand experiences, this book is a practical guide to successful Autonomous Experimentation.

Despite the field's growing potential, there exists numerous myths and misconceptions surrounding Autonomous Experimentation. Combining insights from theorists, machine-learning engineers and applied scientists, this book aims to lay the foundation for future research and widespread adoption within the scientific community.

This book is particularly useful for members of the scientific community looking to improve their research methods but also contains additional insights for students and industry professionals interested in the future of the field.

商品描述(中文翻譯)

自主實驗即將徹底改變先進實驗設施中的科學實驗。過去,人類實驗者需要負擔繁瑣的監督每一項測量的任務,而最近在數學、機器學習和演算法方面的進展,已經通過實現自動化和智能決策來減輕這一負擔,最小化對人類干預的需求。本書闡述了理論基礎並融入了實務工作者的第一手經驗,是一本成功進行自主實驗的實用指南。

儘管該領域的潛力日益增長,但圍繞自主實驗仍存在許多神話和誤解。本書結合了理論家、機器學習工程師和應用科學家的見解,旨在為未來的研究和在科學社群中的廣泛採用奠定基礎。

本書對於希望改善研究方法的科學社群成員特別有用,同時也為對該領域未來感興趣的學生和行業專業人士提供了額外的見解。

作者簡介

Marcus M. Noack received his Ph.D. in applied mathematics from Oslo University, Norway. At Lawrence Berkeley National Laboratory, he is working on stochastic function approximation, optimization and uncertainty quantification, applied to Autonomous Experimentation.

Daniela Ushizima, Ph.D. in physics from the University of Sao Paulo, Brazil after majoring in computer science, has been associated with Lawrence Berkeley National Laboratory since 2007, where she investigates machine learning algorithms applied to image processing. Her primary focus has been on developing computer vision software to automate scientific data analysis.

作者簡介(中文翻譯)

Marcus M. Noack 於挪威奧斯陸大學獲得應用數學博士學位。目前在洛倫斯伯克利國家實驗室工作,專注於隨機函數逼近、優化和不確定性量化,應用於自主實驗。

Daniela Ushizima 於巴西聖保羅大學獲得物理學博士學位,主修計算機科學,自2007年以來一直與洛倫斯伯克利國家實驗室合作,研究應用於影像處理的機器學習演算法。她的主要研究重點是開發計算機視覺軟體,以自動化科學數據分析。

最後瀏覽商品 (1)