Joint Models for Longitudinal and Time-To-Event Data: With Applications in R
暫譯: 長期與事件時間數據的聯合模型:R語言應用實例

Rizopoulos, Dimitris

  • 出版商: CRC
  • 出版日期: 2023-01-21
  • 售價: $2,460
  • 貴賓價: 9.5$2,337
  • 語言: 英文
  • 頁數: 278
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032477563
  • ISBN-13: 9781032477565
  • 相關分類: R 語言
  • 海外代購書籍(需單獨結帳)

商品描述

In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models.

All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author.


All the R code used in the book is available at:

http: //jmr.r-forge.r-project.org/

商品描述(中文翻譯)

在縱向研究中,通常會關心如何調查一個隨時間重複測量的標記與某個感興趣事件的時間之間的關聯,例如前列腺癌研究中,會收集縱向的 PSA 水平測量數據,並與復發時間進行關聯分析。縱向與事件時間數據的聯合模型:在 R 中的應用 提供了隨機效應聯合模型的完整處理,這些模型可用於分析此類數據。內容主要是解釋性的,專注於聯合建模的應用,但提供了足夠的數學細節,以促進對這些模型關鍵特徵的理解。

所有提出的插圖均可通過作者撰寫的免費可用套件 JM 在 R 程式語言中實現。

書中使用的所有 R 代碼可在以下網址獲得:
http://jmr.r-forge.r-project.org/

作者簡介

Dimitris Rizopoulos is an Assistant Professor at the Department of Biostatistics of the Erasmus University Medical Center in the Netherlands. Dr. Rizopoulos received his M.Sc. in Statistics in 2003 from the Athens University of Economics and Business, and a Ph.D. in Biostatistics in 2008 from the Katholieke Universiteit Leuven.

Dr. Rizopoulos wrote his dissertation, as well as a number of methodological articles on various aspects of joint models for longitudinal and time-to-event data. He currently serves as an Associate Editor for Biometrics and Biostatistics, and has been a guest editor for a special issue in joint modeling techniques in Statistical Methods in Medical Research.

作者簡介(中文翻譯)

迪米特里斯·里佐普洛斯是荷蘭伊拉斯謨斯大學醫學中心生物統計學系的助理教授。里佐普洛斯博士於2003年在雅典經濟與商業大學獲得統計學碩士學位,並於2008年在魯汀根天主教大學獲得生物統計學博士學位。

里佐普洛斯博士撰寫了他的論文,以及多篇關於長期和事件時間數據的聯合模型各個方面的方法論文章。他目前擔任生物統計學與生物統計的副編輯,並曾擔任醫學研究中的統計方法特刊的客座編輯,專注於聯合建模技術。