Visual Object Tracking using Deep Learning
暫譯: 使用深度學習的視覺物體追蹤
Kumar, Ashish
- 出版商: CRC
- 出版日期: 2025-06-27
- 售價: $2,310
- 貴賓價: 9.5 折 $2,195
- 語言: 英文
- 頁數: 202
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1032598077
- ISBN-13: 9781032598079
-
相關分類:
DeepLearning
尚未上市,無法訂購
相關主題
商品描述
This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed.
The book also:
- Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methods
- Elaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexity
- Illustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenarios
- Explores the future research directions for visual tracking by analyzing the real-time applications
The book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology.
商品描述(中文翻譯)
本書涵蓋了傳統方法和先進方法的描述。在傳統方法中,討論了隨機、確定性、生成式和判別式等視覺追蹤技術。進一步探討了傳統技術在多階段和協作框架中的應用。在先進方法中,分析了各類基於深度學習的追蹤器和基於相關濾波器的追蹤器。
本書還:
- 討論了用於比較各種視覺追蹤方法效率和有效性的潛在性能指標
- 詳述了深度學習追蹤器與傳統追蹤器的顯著特徵,其中手工特徵被融合以降低計算複雜度
- 說明了適合在繁瑣追蹤場景下實現卓越和高效性能的各類基於相關濾波器的追蹤器
- 通過分析實時應用,探索視覺追蹤的未來研究方向
本書全面討論了各種基於深度學習的追蹤架構以及傳統追蹤方法。它深入分析了各種特徵提取技術、評估指標和可用於追蹤框架性能評估的基準。該文本主要針對電機工程、電子與通信工程、計算機工程和資訊技術領域的高年級本科生、研究生和學術研究人員撰寫。
作者簡介
Dr. Ashish Kumar, Ph.D., is working as an assistant professor with Bennett University, Greater Noida, U.P., India. He has completed his Ph.D. in Computer Science and Engineering from Delhi Technological University (formerly DCE), New Delhi, India in 2020. He has received best researcher award from the Delhi Technological University for his contribution in the computer vision domain. He has completed M.Tech with distinction in computer Science and Engineering from GGS Inderpratha University, New Delhi. He has published many research papers in various reputed national and international journals and conferences. His current research interests include object tracking, image processing, artificial intelligence, and medical imaging analysis.
作者簡介(中文翻譯)
阿希什·庫馬博士(Dr. Ashish Kumar, Ph.D.)目前擔任印度大諾伊達的班奈特大學(Bennett University)助理教授。他於2020年在印度新德里的德里科技大學(Delhi Technological University,前身為DCE)獲得計算機科學與工程的博士學位。他因在計算機視覺領域的貢獻而獲得德里科技大學的最佳研究者獎。他在新德里GGS Inderpratha大學以優異成績完成計算機科學與工程的碩士學位(M.Tech)。他在多個知名的國內外期刊和會議上發表了許多研究論文。他目前的研究興趣包括物體追蹤、影像處理、人工智慧和醫學影像分析。