Computational Techniques for Biological Sequence Analysis
暫譯: 生物序列分析的計算技術
Umer, Saiyed, Rout, Ranjeet Kumar, Khandelwal, Monika
- 出版商: CRC
- 出版日期: 2025-06-17
- 售價: $3,610
- 貴賓價: 9.5 折 $3,430
- 語言: 英文
- 頁數: 200
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032630264
- ISBN-13: 9781032630267
尚未上市,無法訂購
相關主題
商品描述
This book provides an overview of basic and advanced computational techniques for analyzing and understanding protein, RNA, and DNA sequences. It covers effective computing techniques for DNA and protein classifications, evolutionary and sequence information analysis, evolutionary algorithms, and ensemble algorithms. Furthermore, the book reviews the role of machine learning techniques, artificial intelligence, ensemble learning, and sequence-based features in predicting post-translational modifications in proteins, DNA methylation, and mRNA methylation, along with their functional implications. The book also discusses the prediction of protein-protein and protein-DNA interactions, protein structure, and function using computational methods. It also presents techniques for quantitative analysis of protein-DNA interactions and protein methylation and their involvement in gene regulation. Additionally, the use of nature-inspired algorithms to gain insights into gene regulatory mechanisms and metabolic pathways in human diseases is explored. This book acts as a useful reference for bioinformaticians and computational biologists working in the fields of molecular biology, genomics, and bioinformatics.
Key Features:
- Reviews machine learning techniques for DNA sequence classification and protein structure prediction
- Discusses genetic algorithms for analyzing multiple sequence alignments and predicting protein-protein interaction sites
- Explores computational methods for quantitative analysis of protein-DNA interactions
- Examine the role of nature-inspired algorithms in understanding the gene regulation and metabolic pathways
- Covers evolutionary algorithms and sequence-based features in predicting post-translational modifications
商品描述(中文翻譯)
這本書提供了基本和進階計算技術的概述,用於分析和理解蛋白質、RNA 和 DNA 序列。它涵蓋了有效的計算技術,用於 DNA 和蛋白質分類、進化和序列信息分析、進化算法以及集成算法。此外,本書回顧了機器學習技術、人工智慧、集成學習和基於序列的特徵在預測蛋白質的翻譯後修飾、DNA 甲基化和 mRNA 甲基化中的作用及其功能意涵。本書還討論了使用計算方法預測蛋白質-蛋白質和蛋白質-DNA 互動、蛋白質結構和功能。它還介紹了蛋白質-DNA 互動和蛋白質甲基化的定量分析技術,以及它們在基因調控中的參與。此外,本書探討了使用自然啟發算法來深入了解人類疾病中的基因調控機制和代謝途徑。本書對於在分子生物學、基因組學和生物資訊學領域工作的生物資訊學家和計算生物學家來說,是一本有用的參考資料。
主要特點:
- 回顧 DNA 序列分類和蛋白質結構預測的機器學習技術
- 討論用於分析多序列比對和預測蛋白質-蛋白質互動位點的遺傳算法
- 探索用於蛋白質-DNA 互動的定量分析的計算方法
- 檢視自然啟發算法在理解基因調控和代謝途徑中的作用
- 涵蓋進化算法和基於序列的特徵在預測翻譯後修飾中的應用
作者簡介
Saiyed Umer is currently serving as an Assistant Professor in the Department of Computer Science and Engineering Aliah University, Kolkata, India. He was the Research Personnel at Indian Statistical Institute (ISI), Kolkata, India, from November 2012 to April 2017. He received a PhD Degree (Engineering executed in ISI Kolkata) from the Department of Information Technology at Jadavpur University, Kolkata, India, in March 2017. He earned B.Sc. (Hons) degree in Mathematics from Vidyasagar University, India, in 2005 and a Master of Computer Applications from the West Bengal University of Technology, India, in 2008 respectively. Dr Umer received an M.Tech degree from the University of Kalyani, India, in 2012. He has published several papers in peer-reviewed international and scientific journals in the field of Biometric, Affective Computing, Big-data research, Business Human Resource Management, and Computational Biology. His research interests include Computer Vision, Machine Learning, Deep Learning, and Business data analytics techniques.
Ranjeet Kumar Rout is currently serving as Assistant Professor in the Department of Information Technology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India. Formally, he was the Assistant Professor in the Department of Computer Science and Engineering, National Institute of Technology Srinagar, Hazratbal, India. He received his Ph.D. from the department of Information Technology of Indian Institute of Engineering Science and Technology Shibpur, West Bengal, India. Previously, he earned Post Graduate and bachelor's degree in computer science and Engineering from Biju Patnaik University of Technology, Odisha, India, in 2010 and 2005, respectively. Prior to working at NIT Srinagar, Dr. Ranjeet had research and teaching experience from Amity University Noida, National Institute Technology Jalandhar, and Indian Statistical Institute (ISI) Kolkata, India. His research interests include machine learning, deep learning, visual cryptography, and computational biology. He has published several papers in peer reviewed international and scientific journals in the field of non-linear Boolean functions and computational biology.
Monika Khandelwal is currently an Assistant Professor in the Department of Computer Science and Engineering, Jaypee University, Solan, Himachal Pradesh, India. She earned her Ph.D. from the Department of Computer Science and Engineering at National Institute of Technology Srinagar, Hazratbal, India. She received her M.Tech. Degree in Computer Science and Engineering from Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Punjab, India in 2016 and B.Tech. Degree in Computer Science and Engineering from Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India. Prior to joining Ph.D. at NIT Srinagar, she had teaching experience from National Institute Technology Hamirpur and Malaviya National Institute of Technology Jaipur, India. She has published several papers in conferences, journals, and book chapters. Her research interests include machine learning, deep learning, bioinformatics, and computational biology.
Smitarani Pati is working in the Instrumentation and Control Engineering on modeling, control, and optimization of industrial processes such as energy optimization using soft computing techniques. She earned her Ph.D. Degree at Instrumentation and Control Engineering from Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Punjab, India. She received the B. Tech degree in electrical engineering from the Biju Patnaik University of Technology, Odisha, India, in 2011, the M.Tech degree in control and Instrumentation Engineering from Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Punjab, India 2018. She has published several articles in international conferences and book chapters. Her current research interests include Energy modeling and optimization, design of distributed systems, and fault-tolerant controls.
作者簡介(中文翻譯)
Saiyed Umer 目前擔任印度加爾各答阿利亞大學計算機科學與工程系的助理教授。他曾於2012年11月至2017年4月在印度統計學研究所(ISI)擔任研究人員。他於2017年3月在印度加爾各答的賈達夫普爾大學資訊科技系獲得博士學位(工程)。他於2005年在印度維迪亞薩加大學獲得數學的學士(榮譽)學位,並於2008年在印度西孟加拉技術大學獲得計算機應用碩士學位。Umer博士於2012年在印度卡利亞尼大學獲得M.Tech學位。他在生物識別、情感計算、大數據研究、商業人力資源管理和計算生物學等領域的國際同行評審科學期刊上發表了多篇論文。他的研究興趣包括計算機視覺、機器學習、深度學習和商業數據分析技術。
Ranjeet Kumar Rout 目前擔任印度旁遮普邦賈蘭達爾的Dr. B. R. Ambedkar國立技術學院資訊科技系的助理教授。之前,他曾在印度斯里納加爾國立技術學院計算機科學與工程系擔任助理教授。他在印度西孟加拉的印度工程科學與技術學院Shibpur的資訊科技系獲得博士學位。此前,他於2010年和2005年分別在印度奧里薩邦的比朱·帕特奈克技術大學獲得計算機科學與工程的碩士和學士學位。在加入NIT斯里納加爾之前,Ranjeet博士曾在阿米提大學諾伊達、國立技術學院賈蘭達爾和印度統計學研究所(ISI)加爾各答擁有研究和教學經驗。他的研究興趣包括機器學習、深度學習、視覺密碼學和計算生物學。他在非線性布爾函數和計算生物學領域的國際同行評審科學期刊上發表了多篇論文。
Monika Khandelwal 目前是印度喜馬偕爾邦索蘭的Jaypee大學計算機科學與工程系的助理教授。她在印度斯里納加爾的國立技術學院計算機科學與工程系獲得博士學位。她於2016年在印度旁遮普邦的Dr. B.R. Ambedkar國立技術學院獲得計算機科學與工程的M.Tech學位,並在印度哈里亞納邦的Guru Jambheshwar科學與技術大學獲得計算機科學與工程的B.Tech學位。在加入NIT斯里納加爾攻讀博士學位之前,她曾在國立技術學院哈米爾普爾和馬拉維亞國立技術學院斋浦爾擁有教學經驗。她在會議、期刊和書籍章節上發表了多篇論文。她的研究興趣包括機器學習、深度學習、生物資訊學和計算生物學。
Smitarani Pati 目前在儀器與控制工程領域工作,專注於工業過程的建模、控制和優化,例如使用軟計算技術進行能源優化。她在印度旁遮普邦的Dr. B.R. Ambedkar國立技術學院獲得儀器與控制工程的博士學位。她於2011年在印度奧里薩邦的比朱·帕特奈克技術大學獲得電氣工程的B.Tech學位,並於2018年在Dr. B.R. Ambedkar國立技術學院獲得控制與儀器工程的M.Tech學位。她在國際會議和書籍章節上發表了多篇文章。她目前的研究興趣包括能源建模與優化、分佈式系統設計和容錯控制。