Advances in High-Order Sensitivity Analysis
暫譯: 高階靈敏度分析的進展

Cacuci, Dan Gabriel

  • 出版商: CRC
  • 出版日期: 2026-03-09
  • 售價: $4,030
  • 貴賓價: 9.8$3,949
  • 語言: 英文
  • 頁數: 284
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032763590
  • ISBN-13: 9781032763590
  • 相關分類: 數值分析 Numerical-analysis
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The high-order sensitivities of model responses with respect to model parameters are notoriously difficult to compute for large-scale models involving many parameters. The neglect of higher-order response sensitivities leads to substantial errors in predicting the moments (expectation, variance, skewness, kurtosis) of the model response's distribution in the phase-space of model parameters. The author expands on his theory of addressing high-order sensitivity analysis.

The mathematical/computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model's parameters stem from experimental procedures that are also subject to imprecision and/or uncertainties, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model.

In the particular case of sensitivity analysis using conventional methods, the number of large-scale computations increases exponentially. For large-scale models involving many parameters, even the first-order sensitivities are computationally very expensive to determine accurately by conventional methods. Furthermore, the "curse of dimensionality" prohibits the accurate computation of higher-order sensitivities by conventional methods.

Other books by the author, all published by CRC Press, include Sensitivity & Uncertainty Analysis, Volume: Theory (2003), and Sensitivity and Uncertainty Analysis, Volume II: Applications to Large-Scale Systems (Cacuci, et al., 2005), Computational Methods for Data Evaluation and Assimilation (Cacuci, et al.,2014). The Second-Order Adjoint Sensitivity Analysis Methodology (2018), and Advances in High-Order Predictive Modeling Methodologies and Illustrative Problems (2025).

商品描述(中文翻譯)

模型響應對模型參數的高階靈敏度計算在涉及多個參數的大型模型中是著名的困難。忽略高階響應靈敏度會導致在模型參數的相位空間中預測模型響應分佈的矩(期望值、方差、偏度、峰度)時出現重大誤差。作者擴展了他關於高階靈敏度分析的理論。

物理系統的數學/計算模型包含參數、獨立變數和依賴變數。由於物理過程本身很少被精確知道,且大多數模型的參數源自於也受到不精確和/或不確定性影響的實驗程序,因此這些模型預測的結果也不精確,受到各自模型所潛在的不確定性影響。

在使用傳統方法進行靈敏度分析的特定情況下,大型計算的數量呈指數增長。對於涉及多個參數的大型模型,即使是第一階靈敏度的準確計算也非常昂貴。此外,「維度詛咒」禁止了通過傳統方法準確計算高階靈敏度。

作者的其他書籍均由CRC Press出版,包括《靈敏度與不確定性分析,卷:理論》(2003年),以及《靈敏度與不確定性分析,卷二:應用於大型系統》(Cacuci等,2005年)、《數據評估與同化的計算方法》(Cacuci等,2014年)、《二階伴隨靈敏度分析方法論》(2018年)和《高階預測建模方法及示例問題的進展》(2025年)。

作者簡介

Dan Gabriel Cacuci is a Distinguished Professor Emeritus in the Department of Mechanical Engineering at the University of South Carolina and the Karlsruhe Institute of Technology, Germany. He received his PhD in applied physics, mechanical, and nuclear engineering from Columbia University, New York City. He is also the recipient of many awards, including four honorary doctorates, Germany's Humboldt Preis, the Ernest Orlando Lawrence Memorial Award from the U.S. Department of Energy, and the Arthur Holly Compton, Eugene P. Wigner, and Glenn Seaborg Awards from the American Nuclear Society.

作者簡介(中文翻譯)

丹·加布里埃爾·卡庫奇是南卡羅來納大學機械工程系的榮譽教授,以及德國卡爾斯魯厄理工學院的榮譽教授。他在紐約市的哥倫比亞大學獲得應用物理、機械工程和核工程的博士學位。他還獲得了許多獎項,包括四個榮譽博士學位、德國洪堡獎、來自美國能源部的厄尼斯特·奧蘭多·勞倫斯紀念獎,以及美國核學會的亞瑟·霍利·康普頓獎、尤金·P·維根獎和格倫·西博格獎。