Causal Inference and Machine Learning: In Economics, Social, and Health Sciences
暫譯: 因果推斷與機器學習:在經濟學、社會科學與健康科學中的應用
Yuksel, Mutlu, Aydede, Yigit
- 出版商: CRC
- 出版日期: 2025-12-31
- 售價: $5,040
- 貴賓價: 9.5 折 $4,788
- 語言: 英文
- 頁數: 816
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032820411
- ISBN-13: 9781032820415
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Causal Inference and Machine Learning in Economics, Social, and Health Sciences bridges the gap between modern machine learning methods and the applied needs of economists, public health researchers, and social scientists. Designed with students and practitioners in mind, the book introduces machine learning through the lens of causal inference, offering a rigorous yet accessible roadmap for using data to answer real-world policy questions.
It combines econometric and machine learning methods such as penalized regressions, random forests, boosting, double machine learning, and the most up-to-date estimation methods for addressing selection on observables (e.g., matching, AIPW) and unobservables (e.g., instrumental variables, difference-in-differences, synthetic control). Readers learn how to estimate treatment effects, uncover heterogeneity, and work with high-dimensional data, while gaining clarity on assumptions, trade-offs, and limitations. The book also covers advanced and often underrepresented topics such as time series forecasting with machine learning methods, neural networks and deep learning, and core optimization algorithms like gradient descent. Each method is introduced with intuition, formal treatment, and applied examples from economics, health, labor, and development studies. It places special emphasis on transparency, identification, and interpretability.
Beyond introducing models, it provides step-by-step guidance from raw data to estimation, showing not just what works, but how and why--both methodologically and computationally. Unlike many texts that rely on pre-built software or assume deep technical knowledge, this book builds from foundational concepts such as estimation, error decomposition, and bias-variance trade-offs, then progresses to advanced machine learning approaches. Simulation-based pedagogy helps readers visualize model behavior under known conditions, enabling researchers and students alike to see how statistical tools perform across diverse empirical settings.
A distinctive feature of the book is its focus on when and how to use predictive versus causal models. Rather than treating them as separate tasks, it shows how each can inform the other. Practical insights, diagnostics, and examples guide readers in selecting appropriate tools based on research goals and data characteristics.
With its clear style, practical code in R, and integrated approach to prediction and causality, this book is an essential resource for applied researchers, students, and anyone using data to inform policy and decision-making.
KEY FEATURES
- Integrates causal inference with the latest econometric and machine learning methods to address real-world policy questions in economics, health, and the social sciences.
- Offers clear, detailed explanations and intuitive guidance--even for foundational concepts often overlooked in other sources--to build theoretical understanding and link econometric principles to application.
- Designed for applied researchers, students, and practitioners with limited technical background, with step-by-step instruction from raw data and basic code, including how both the methods and the underlying code function.
- Provides practical guidance on when and how to use predictive vs. causal models, highlighting their trade-offs and pitfalls to avoid, supported by real-world examples and simulation-based demonstrations.
商品描述(中文翻譯)
《因果推斷與機器學習在經濟學、社會科學及健康科學中的應用》彌合了現代機器學習方法與經濟學家、公共衛生研究者及社會科學家的應用需求之間的鴻溝。這本書以學生和實務工作者為目標,通過因果推斷的視角介紹機器學習,提供了一條嚴謹而易於理解的路徑,幫助讀者利用數據回答現實世界的政策問題。
本書結合了計量經濟學和機器學習方法,如懲罰性回歸、隨機森林、提升法、雙重機器學習,以及針對可觀察(例如,匹配、AIPW)和不可觀察(例如,工具變數、差異中的差異、合成控制)進行處理的最新估計方法。讀者將學會如何估計處理效應、揭示異質性,並處理高維數據,同時清晰了解假設、權衡和限制。本書還涵蓋了高級且常被忽視的主題,如使用機器學習方法的時間序列預測、神經網絡和深度學習,以及核心優化算法如梯度下降。每種方法都以直觀的方式介紹,並提供來自經濟學、健康、勞動和發展研究的應用範例。特別強調透明性、識別性和可解釋性。
除了介紹模型外,本書還提供從原始數據到估計的逐步指導,展示不僅是什麼有效,還有如何和為什麼有效——無論是在方法論上還是計算上。與許多依賴預建軟體或假設深厚技術知識的文本不同,本書從估計、誤差分解和偏差-方差權衡等基礎概念開始,然後進展到高級機器學習方法。基於模擬的教學法幫助讀者在已知條件下可視化模型行為,使研究者和學生能夠看到統計工具在不同實證環境中的表現。
本書的一個獨特特點是專注於何時以及如何使用預測模型與因果模型。它並不將這兩者視為獨立的任務,而是展示了每個模型如何相互啟發。實用的見解、診斷和範例指導讀者根據研究目標和數據特徵選擇合適的工具。
憑藉其清晰的風格、實用的 R 語言代碼以及對預測和因果關係的綜合方法,本書是應用研究者、學生以及任何使用數據來指導政策和決策的人的重要資源。
主要特點:
- 將因果推斷與最新的計量經濟學和機器學習方法整合,以解決經濟學、健康和社會科學中的現實政策問題。
- 提供清晰、詳細的解釋和直觀的指導——即使是其他來源中常被忽視的基礎概念——以建立理論理解並將計量經濟學原則與應用聯繫起來。
- 為技術背景有限的應用研究者、學生和實務工作者設計,提供從原始數據和基本代碼的逐步指導,包括方法和底層代碼的功能。
- 提供有關何時及如何使用預測模型與因果模型的實用指導,強調其權衡和應避免的陷阱,並以現實世界的範例和基於模擬的演示作為支持。
作者簡介
Mutlu Yuksel is a Professor of Economics at Dalhousie University, Canada, and an applied microeconomist whose research spans labor, health, and development. His recent work applies machine learning and high-dimensional data to complex policy questions. He has received teaching awards and co-founded the ML Portal to support research and training in social and health policy.
Yigit Aydede is the Sobey Professor of Economics at Saint Mary's University, Canada, and an applied economist working at the intersection of econometrics, machine learning, and artificial intelligence (AI). He teaches data analytics and serves as Faculty in Residence at the Sobey School of Business and as an Affiliate Scientist at Nova Scotia Health. Aydede is also the co-founder of Novastorms.ai and the ML Portal, both focused on data-driven public policy and health research.
作者簡介(中文翻譯)
穆特魯·尤克塞爾是加拿大達爾豪斯大學的經濟學教授,專注於應用微觀經濟學,其研究範圍涵蓋勞動、健康和發展。他最近的工作將機器學習和高維數據應用於複雜的政策問題。他曾獲得教學獎項,並共同創立了ML Portal,以支持社會和健康政策的研究與培訓。
伊基特·艾德德是加拿大聖瑪麗大學的索貝經濟學教授,專注於經濟計量學、機器學習和人工智慧(AI)交叉領域的應用經濟學。他教授數據分析,並擔任索貝商學院的駐校教授及新斯科舍健康的附屬科學家。艾德德也是Novastorms.ai和ML Portal的共同創辦人,這兩者均專注於數據驅動的公共政策和健康研究。