Causal Inference for Machine Learning Engineers: A Practical Guide
暫譯: 機器學習工程師的因果推斷:實用指南
Rajamanickam, Durai
- 出版商: Springer
- 出版日期: 2026-01-03
- 售價: $2,660
- 貴賓價: 9.5 折 $2,527
- 語言: 英文
- 頁數: 245
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031996798
- ISBN-13: 9783031996795
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book provides a comprehensive exploration of causal inference, specifically tailored for machine learning practitioners. It begins by establishing the fundamental distinction between correlation and causation, emphasizing why traditional machine learning models--primarily focused on pattern recognition--often fall short in scenarios that require an understanding of cause and effect. The book introduces core causal concepts, such as interventions and counterfactuals, and explains how these ideas are formalized through tools like causal graphs (Directed Acyclic Graphs, or DAGs) and the do-operator. Readers will learn to identify common pitfalls in observational data, including confounding, selection bias, and Simpson's Paradox, and will understand why these challenges necessitate a causal approach. Causal Inference for Machine Learning Engineers: A Practical Guide then moves to practical methods for causal estimation, detailing techniques such as regression adjustment, propensity score methods (including matching, stratification, and inverse probability weighting), and instrumental variables. The book delves into advanced topics such as mediation analysis, causal discovery algorithms (PC and FCI), and transportability, providing a roadmap for applying causal reasoning in diverse real-world applications across healthcare, economics, and the social sciences. A significant portion is dedicated to integrating causal inference with deep learning, introducing architectures such as TARNet, CFRNet, and DragonNet, as well as frameworks like Double Machine Learning, all designed to address the challenges of high-dimensional data and improve causal effect estimation in complex settings.
商品描述(中文翻譯)
本書提供了對因果推斷的全面探索,特別針對機器學習從業者進行量身定制。它首先建立了相關性與因果性之間的基本區別,強調為何傳統的機器學習模型——主要專注於模式識別——在需要理解因果關係的情境中往往無法滿足需求。本書介紹了核心的因果概念,如干預和反事實,並解釋了這些概念如何通過工具如因果圖(有向無循環圖,或稱DAG)和do運算子進行形式化。讀者將學會識別觀察數據中的常見陷阱,包括混淆、選擇偏誤和辛普森悖論,並理解為何這些挑戰需要因果方法。
《因果推斷與機器學習工程師:實用指南》接著轉向因果估計的實用方法,詳細介紹了回歸調整、傾向分數方法(包括匹配、分層和逆概率加權)以及工具變數等技術。本書深入探討了高級主題,如中介分析、因果發現算法(PC和FCI)以及可傳輸性,提供了一個在醫療保健、經濟學和社會科學等多樣化現實應用中應用因果推理的路線圖。書中還有相當一部分專門致力於將因果推斷與深度學習相結合,介紹了如TARNet、CFRNet和DragonNet等架構,以及像雙重機器學習這樣的框架,這些都旨在解決高維數據的挑戰並改善複雜環境中的因果效應估計。
作者簡介
Durai Rajamanickam is a distinguished AI and data science leader with over two decades of experience, specializing in the application of machine learning to critical real-world challenges in healthcare, finance, and legal technology. Renowned for his ability to distill complex theoretical concepts into actionable solutions, he has spearheaded transformative AI initiatives across various industries.
作者簡介(中文翻譯)
Durai Rajamanickam 是一位傑出的人工智慧(AI)和數據科學領導者,擁有超過二十年的經驗,專注於將機器學習應用於醫療、金融和法律科技等關鍵現實挑戰。他以能夠將複雜的理論概念提煉成可行的解決方案而聞名,並在各行各業推動了變革性的 AI 項目。