Feature Selection and Feature Extraction on Omics Data
暫譯: 基因組數據的特徵選擇與特徵提取

Mallik, Saurav, Zhao, Zhongming, Seth, Soumita

  • 出版商: CRC
  • 出版日期: 2026-03-12
  • 售價: $6,820
  • 貴賓價: 9.8$6,683
  • 語言: 英文
  • 頁數: 264
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032967676
  • ISBN-13: 9781032967677
  • 相關分類: Data-mining
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In today's data-driven world, biology and medicine are being transformed by the power of big data. Making sense of large, complicated biological datasets is a crucial problem that underlies every medical advancement and gene discovery. The book Advanced Feature Selection and Feature Extraction Techniques for Omics Data Analysis provides insight into this innovative area where biological science and computational science collide. This book, which is written in an approachable manner, explains the methods researchers employ to sort through vast amounts of multi-omics data to find insights that may result in better treatments, early disease diagnosis, and a greater comprehension of life at the molecular level. This volume provides a unique look at the technologies influencing the future of biological discovery and customized medicine, making it the perfect choice for anyone interested in learning more about how AI and data science are transforming biology and health.

This collection explores cutting-edge feature selection and extraction methods across a broad range of omics data formats, such as metagenomics, genomics, transcriptomics, epigenomics, and datasets etc. Readers will learn how these techniques can be used to improve disease classification, find promising biomarkers, uncover significant biological patterns, and aid in early diagnosis. The chapters discuss techniques designed to regulate sparsity, minimize dimensionality, and preserve biological interpretability while fusing fundamental ideas with practical applications. Case studies and real-world applications show how these methods enhance computational models' performance in tasks like disease prediction and gene identification. This book is a great resource whether you're new to omics data analysis or looking to improve your current workflows using sophisticated feature engineering techniques. It connects theory and application with contributions from subject matter experts to assist readers in converting unprocessed data into biologically significant insights, making it an essential resource in contemporary computational biology and precision medicine.

This book offers a comprehensive exploration of cutting-edge methodologies designed to address the complexities of high-dimensional biological datasets. This book serves as a practical and theoretical guide for researchers, data scientists, and students working at the intersection of bioinformatics and machine learning.

This book is a comprehensive and application-focused approach to one of the most pressing challenges in modern bioinformatics: making sense of high-dimensional omics data. While many resources touch on machine learning or biological datasets in isolation, this book bridges the two, offering a unified, practical guide that combines theoretical depth with real-world implementation across diverse omics domains--including genomics, metagenomics, transcriptomics, and epigenomics data.

商品描述(中文翻譯)

在當今數據驅動的世界中,生物學和醫學正受到大數據力量的轉變。理解大型且複雜的生物數據集是一個關鍵問題,這是每一項醫療進展和基因發現的基礎。《高級特徵選擇與特徵提取技術於組學數據分析》一書提供了對這一創新領域的深入見解,該領域是生物科學與計算科學的交匯點。本書以易於理解的方式撰寫,解釋了研究人員如何利用這些方法來篩選大量的多組學數據,以尋找可能導致更好治療、早期疾病診斷以及對分子層面生命更深入理解的見解。本書獨特地展示了影響生物發現和個性化醫療未來的技術,對於任何希望了解人工智慧和數據科學如何改變生物學和健康的人來說,都是完美的選擇。

本書探討了各種組學數據格式(如元基因組學、基因組學、轉錄組學、表觀基因組學等)中的尖端特徵選擇和提取方法。讀者將學習如何利用這些技術來改善疾病分類、尋找有前景的生物標記、揭示重要的生物模式,並協助早期診斷。各章節討論了旨在調節稀疏性、最小化維度並保持生物可解釋性的技術,同時將基本概念與實際應用相融合。案例研究和實際應用展示了這些方法如何提升計算模型在疾病預測和基因識別等任務中的表現。無論您是剛接觸組學數據分析,還是希望利用先進的特徵工程技術改善當前工作流程,本書都是一個極好的資源。它將理論與應用相結合,並由主題專家提供貢獻,幫助讀者將未處理的數據轉化為生物學上重要的見解,使其成為當代計算生物學和精準醫療中的重要資源。

本書全面探討了旨在解決高維生物數據集複雜性的尖端方法論。這本書作為一個實用和理論的指南,適合在生物信息學和機器學習交叉領域工作的研究人員、數據科學家和學生。

本書提供了一個全面且以應用為重點的方法,針對現代生物信息學中最迫切的挑戰之一:理解高維組學數據。雖然許多資源單獨涉及機器學習或生物數據集,但本書將兩者橋接起來,提供一個統一的實用指南,結合理論深度與在多樣組學領域的實際實施,包括基因組學、元基因組學、轉錄組學和表觀基因組學數據。

作者簡介

Saurav Mallik is currently working as Research Scientist in the Department of Pharmacology and Toxicology, The University of Arizona, USA. Previously, he worked as Postdoctoral Fellow in Harvard T.H. Chan School of Public Health, Boston, MA, USA for more than three years (2019-2022), the Center of Precision Health, Department of School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA for one and half year (2018-2019), and in the Division of Bio-statistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA for more than one year (2017-2018). He obtained his PhD degree in the Department of Computer Science and Engineering (C.S.E.) from Jadavpur University, Kolkata, India in 2017 while his PhD works carried out in Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India as Junior Research Fellow and Visiting Scientist. He has obtained the award of Research Associateship from CSIR (Council of Scientific and Industrial Research), MHRD, Govt. of India in 2017. Dr. Mallik has more than 150 research papers in different top high impact factor peer-reviewed International Journals, Conferences and Book Chapters. He published several Books and Patents. He is working as the active member of Institute of Electrical and Electronics Engineers (IEEE), USA, ACM and American Association for Cancer Research (AACR), USA and Bioclues, India. He has also worked with section editors and reviewers with several well-reputed high impact journals. His research interest includes Computational Biology, Knowledge Retrieval and Data Mining, Bioinformatics, Bio-Statistics and Machine Learning/Deep Learning.

Zhongming Zhao, Ph.D., M.S. is a chair professor at McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth). He holds University Chair for Precision Health and is the founding director of the Center for Precision Health. Before he joined UTHealth in 2016, he was Ingram Endowed Professor of Cancer Research, Professor (tenured) in the Departments of Biomedical Informatics, Psychiatry, and Cancer Biology at Vanderbilt University Medical Center, Chief Bioinformatics Officer of the Vanderbilt-Ingram Cancer Center (VICC), and Director of the VICC Bioinformatics Resource Center. Dr. Zhao has broad interests in bioinformatics, genomics, population genetics, precision medicine, and machine learning and has co-authored over 500 total publications in these areas (cited by >25,000 times, H-index = 80). Dr. Zhao has served as the Editor-in-Chief, Associate Editor, or editorial board member of 22 journals. Dr. Zhao is the founding president of The International Association for Intelligent Biology and Medicine (IAIBM, 2018). He was elected as a fellow in the American College of Medical Informatics (ACMI, 2021), the American Medical Informatics Association (FAMIA, 2022), and the American Institute for Medical and Biological Engineering (AIMBE, 2023).

Soumita Seth is currently serving as an Assistant Professor in the Department of Computer Science and Engineering of Future Institute of Engineering and Management, Kolkata, India, Affiliated to MAKAUT, Kolkata. Besides, she is recently submitted her PhD thesis in the Department of Computer Science & Engineering (CSE) from a state-government university, Aliah University (AU), Kolkata, India. Previously, She completed M.Tech. and B.Tech. from the departments of CSE and IT, respectively. She is also collaborating her PhD research with The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA. She has Academic Experience of almost 7 years, Fulltime Research Experience of 2 years, and Industrial Experience of 2 years. Dr. Seth has more than 10 research papers in different top high impact factor peer-reviewed International Journals, Conferences and Book Chapters. She is also publishing forthcoming books with Scopus indexed publishers (Online link is also available). She has also worked with section editors and section reviewers with several well-reputed high impact journals. Her research interests include Computational Biology, Data Mining, Bioinformatics, Pattern Recognition, Biological Regulatory Networks, Biostatistics, Machine learning/Deep learning.

Aimin Li is an assistant professor of Xi'an University of Technology, China. He got his master degree from Xi'an University of Technology, and doctoral degree from Xidian University. He previously worked as a visiting scientist in University of Texas Health Science Center, Houston, Texas, USA. His current research applications are in the areas of machine learning, bioinformatics, and regulatory networks. He has published 20+ research papers. He is also an editor of International Journal of Computational Biology and Drug Design, PC member of ICIBM (International Conference on Intelligent Biology and Medicine), and co-chair of BIBM IWRI 2020.

Kasmika Borah is a researcher in the department of Computer Science and IT, Cotton University, Assam India. She completed her masters in Bioinformatics from Dibrugarh University, Assam, India. She has over five years of experience doing research in the fields of drug design, machine learning of next-generation sequencing data, network pharmacology, molecular dynamic simulation, drug repurposing and medical dataset annotation, image processing. She worked on the startup company of AI-based software development. She worked as a Project JRF at CSIR-NEIST, India. She published five articles in reputed international journals and one book chapter in Springer.

Himanish Shekhar Das received the B.Tech degree in Computer Science and Engineering from the Department of Computer Science and Engineering, National Institute of Technology Silchar, Assam, India, in 2012, the M.Tech. degree from the Department of Computer Science and Engineering, National Institute of Technology Durgapur, Assam, India, in 2015, and the Ph.D. degree from the Department of Computer Science and Engineering, National Institute of Technology Silchar, Assam, India, in 2021. He is currently working as an Assistanr Professor with the Department of Computer Science and Information Technology, Cotton University, Assam, India. Before joining Cotton University, he worked as an Assistant Professor with the Department of Computer Science and Engineering, Jorhat Engineering College, Assam, India and Birla Institute of Technology Mesra, Ranchi, India. He has published more than 30 papers in international/national journals/conference proceedings, and book chapters. His research interests include Speech Processing (Language Identification); Medical Image Processing; Machine Learning; Deep Learning; Bioinformatics.

作者簡介(中文翻譯)

**Saurav Mallik** 目前在美國亞利桑那大學的藥理學與毒理學系擔任研究科學家。之前,他在哈佛大學T.H. Chan公共衛生學院擔任博士後研究員超過三年(2019-2022),在德克薩斯州休士頓的德克薩斯大學健康科學中心生物醫學資訊學院精準健康中心工作了一年半(2018-2019),以及在佛羅里達州邁阿密的邁阿密大學米勒醫學院公共衛生科學系生物統計學部工作了一年多(2017-2018)。他於2017年在印度加爾各答的賈達夫普爾大學計算機科學與工程系獲得博士學位,博士研究在印度統計學研究所的機器智能單位進行,擔任初級研究員和訪問科學家。他於2017年獲得印度科學與工業研究理事會(CSIR)和印度政府人力資源發展部(MHRD)頒發的研究助理獎。Mallik博士在不同的高影響因子國際期刊、會議和書籍章節上發表了超過150篇研究論文,並出版了幾本書籍和專利。他是美國電氣與電子工程師學會(IEEE)、美國計算機協會(ACM)、美國癌症研究協會(AACR)和印度Bioclues的活躍成員。他還與幾本知名高影響力期刊的編輯和審稿人合作。他的研究興趣包括計算生物學、知識檢索和數據挖掘、生物資訊學、生物統計學以及機器學習/深度學習。

**Zhongming Zhao**,博士,碩士,現任德克薩斯大學健康科學中心(UTHealth)McWilliams生物醫學資訊學院的講座教授。他擔任精準健康的大學講座教授,並且是精準健康中心的創始主任。在2016年加入UTHealth之前,他曾擔任范德堡大學醫學中心癌症研究的Ingram捐贈教授、生物醫學資訊學、精神病學和癌症生物學系的終身教授、范德堡-英格拉姆癌症中心(VICC)的首席生物資訊官,以及VICC生物資訊資源中心的主任。Zhao博士在生物資訊學、基因組學、群體遺傳學、精準醫療和機器學習等領域有廣泛的興趣,並在這些領域共同發表了超過500篇出版物(被引用超過25,000次,H指數=80)。Zhao博士曾擔任22本期刊的主編、副編輯或編輯委員會成員。他是國際智能生物學與醫學協會(IAIBM,2018)的創始會長。2021年,他被選為美國醫學資訊學會(ACMI)的院士,2022年被選為美國醫學資訊學會(FAMIA)的院士,2023年被選為美國醫學與生物工程學會(AIMBE)的院士。

**Soumita Seth** 目前在印度加爾各答的未來工程與管理學院計算機科學與工程系擔任助理教授。此外,她最近在印度阿利亞大學(AU)計算機科學與工程系提交了博士論文。之前,她分別在計算機科學與工程系和資訊技術系完成了碩士和學士學位。她也在與德克薩斯大學健康科學中心(UTHealth)合作進行博士研究。她擁有近7年的學術經驗,2年的全職研究經驗和2年的工業經驗。Seth博士在不同的高影響因子國際期刊、會議和書籍章節上發表了超過10篇研究論文。她還與Scopus索引的出版商出版即將發行的書籍(在線鏈接也可用)。她還與幾本知名高影響力期刊的編輯和審稿人合作。她的研究興趣包括計算生物學、數據挖掘、生物資訊學、模式識別、生物調控網絡、生物統計學以及機器學習/深度學習。

**Aimin Li** 是中國西安工程大學的助理教授。他在西安工程大學獲得碩士學位,並在西電大學獲得博士學位。他之前曾在美國德克薩斯州休士頓的德克薩斯大學健康科學中心擔任訪問科學家。他目前的研究應用領域包括機器學習、生物資訊學和調控網絡。他已發表超過20篇研究論文。他還是《國際計算生物學與藥物設計期刊》的編輯,ICIBM(國際智能生物學與醫學會議)的程序委員會成員,以及BIBM IWRI 2020的共同主席。

**Kasmika Borah** 是印度阿薩姆邦棉花大學計算機科學與資訊技術系的研究員。她在印度阿薩姆邦迪布魯加爾大學獲得生物資訊學碩士學位。她在藥物設計、下一代測序數據的機器學習、網絡藥理學、分子動力學模擬、藥物重定位和醫療數據集註釋、圖像處理等領域擁有超過五年的研究經驗。她曾在一家基於AI的軟體開發初創公司工作,並在印度CSIR-NEIST擔任項目JRF。她在知名國際期刊上發表了五篇文章,並在Springer出版了一章書。

**Himanish Shekhar Das** 於2012年在印度阿薩姆邦國立技術學院西爾查爾的計算機科學與工程系獲得B.Tech學位,於2015年在印度阿薩姆邦國立技術學院杜爾卡普爾的計算機科學與工程系獲得M.Tech學位,並於2021年在印度阿薩姆邦國立技術學院西爾查爾的計算機科學與工程系獲得博士學位。他目前在印度阿薩姆邦棉花大學的計算機科學與資訊技術系擔任助理教授。在加入棉花大學之前,他曾在印度阿薩姆邦喬爾哈特工程學院和印度蘭契的比爾拉技術學院擔任助理教授。他在國際/國內期刊、會議論文集和書籍章節上發表了超過30篇論文。他的研究興趣包括語音處理(語言識別)、醫學影像處理、機器學習、深度學習和生物資訊學。