Hardware Technologies for Artificial Intelligence: AI Chips, Ising Machines, and In-Memory Computing
暫譯: 人工智慧硬體技術:AI晶片、伊辛機與內存計算
Kawahara, Takayuki
相關主題
商品描述
In this comprehensive reference work for researchers, engineers, and students, Kawahara provides a one-stop exploration of next-generation computing at the LSI circuit level, with a focus on the integration of AI, advanced LSI design, Ising machines, and memory innovations.
While current GPUs have high parallel processing capabilities suitable for computations on large datasets, their power consumption is approaching its limit and requires further development. Additionally, edge computing is becoming increasingly important alongside cloud computing. Amid these significant technological trends, this book provides readers with important insights into next-generation computing, namely (1) neural network (artificial intelligence) LSIs and their low power and high performance, (2) hardware design technology for combinatorial optimization problems and Ising machines, and (3) semiconductor memory and data-centric computing. Kawahara first describes the basics of LSI design and neural networks before then describing their large-scale integration, power efficiency and performance enhancements. He then also explains hardware design techniques for Ising machines, offers case studies of fully coupled Ising machine LSI. Last, he discusses the basics of semiconductor memory, near/in-memory AI computing, and then examines the future prospects. Readers will be able to apply this knowledge to the design and manufacture of such devices to overcome the limitations of current hardware and computational methods, driving future advancements in artificial intelligence and optimization. This is a valuable reference for students, engineers and researchers alike in this field. As it begins with the basics, it enables all readers to follow the direction of next-generation computing and its important technical content without the need for prior knowledge or reference to other books.商品描述(中文翻譯)
在這本針對研究人員、工程師和學生的綜合參考書中,川原提供了一個關於下一代計算的全方位探索,重點在於 LSI 電路層級的整合,包括人工智慧、先進的 LSI 設計、伊辛機和記憶體創新。
目前的 GPU 擁有適合於大數據集計算的高並行處理能力,但其功耗已接近極限,需進一步發展。此外,邊緣計算在雲計算的背景下變得越來越重要。在這些重要的技術趨勢中,本書為讀者提供了關於下一代計算的重要見解,即 (1) 神經網絡(人工智慧)LSI 及其低功耗和高性能,(2) 組合優化問題和伊辛機的硬體設計技術,以及 (3) 半導體記憶體和以數據為中心的計算。川原首先描述了 LSI 設計和神經網絡的基本概念,然後再描述其大規模整合、功率效率和性能增強。他接著解釋了伊辛機的硬體設計技術,並提供了完全耦合的伊辛機 LSI 的案例研究。最後,他討論了半導體記憶體的基本概念、近/內存 AI 計算,並檢視未來的前景。讀者將能夠將這些知識應用於此類設備的設計和製造,以克服當前硬體和計算方法的限制,推動人工智慧和優化的未來進展。
這是一本對於該領域的學生、工程師和研究人員都非常有價值的參考書。由於它從基本概念開始,使所有讀者都能在不需要先前知識或參考其他書籍的情況下,跟隨下一代計算的方向及其重要的技術內容。
作者簡介
Takayuki Kawahara is a professor at Tokyo University of Science. He earned his Bachelor's, Master's and Doctorate from Kyushu University in 1983, 1985, and 1993, respectively. He has significant experience within both industry and academia and is a member of the IEICE and a fellow of the IEEE.
作者簡介(中文翻譯)
川原貴之是東京科技大學的教授。他於1983年、1985年和1993年分別在九州大學獲得學士、碩士和博士學位。他在產業和學術界都有豐富的經驗,並且是電子信息通信學會(IEICE)的會員及IEEE的研究員。