Advances in Deep Generative Models for Healthcare and Medical Applications
暫譯: 醫療與醫學應用中的深度生成模型進展

S, Balasubramaniam, Kadry, Seifedine

  • 出版商: CRC
  • 出版日期: 2025-12-09
  • 售價: $5,590
  • 貴賓價: 9.5$5,311
  • 語言: 英文
  • 頁數: 276
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032988959
  • ISBN-13: 9781032988955
  • 相關分類: GAN 生成對抗網絡
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

We have seen numerous ground-breaking achievements in generative AI, particularly in the areas of computer vision, voice processing, and natural language processing, in recent times. Synthetic human faces, artworks, and cohesive essays on many subjects can be produced with excellent quality by generative adversarial networks and diffusion models. Because of their ability to learn complicated features from healthcare data and medical imaging, generative models are also revolutionizing health care domain. Thus, Generative AI are helping with healthcare and computer-aided diagnostics. The recent success of deep generative models in areas such as text-to-image conversion, diffusion modeling, and large language modeling has brought them immense attention. Learning interpretable representations and integrating different modalities or previous information from domain knowledge are common learning goals for early well-established approaches like variational autoencoders, generative adversarial networks, and normalizing flows. New developments in this area have the potential to open up enormous opportunities in the healthcare field.

This book provides a platform for research on deep generative models, with an emphasis on its healthcare applications. The book addresses the unanswered questions that stop these approaches from making a huge difference in real-world clinical practice. The goal of this book is to bring together a wide range of methodologies which are using generative models in health care-related contexts. The book leverages the recent methodological advancements in deep generative models to address critical health-care challenges across all data-types, paving the way for their practical integration into the healthcare system and elevate their impact on the future of healthcare.

商品描述(中文翻譯)

我們最近見證了生成式人工智慧的許多突破性成就,特別是在計算機視覺、語音處理和自然語言處理等領域。生成對抗網絡和擴散模型能夠以優異的品質生成合成的人類面孔、藝術作品以及多個主題的連貫文章。由於其能夠從醫療數據和醫學影像中學習複雜特徵,生成模型也正在革新醫療領域。因此,生成式人工智慧正在協助醫療保健和電腦輔助診斷。深度生成模型在文本轉圖像轉換、擴散建模和大型語言建模等領域的近期成功引起了廣泛關注。學習可解釋的表示以及整合不同模態或來自領域知識的先前信息是早期成熟方法(如變分自編碼器、生成對抗網絡和正規化流)的共同學習目標。該領域的新發展有潛力在醫療領域開啟巨大的機會。

本書提供了一個關於深度生成模型的研究平台,重點關注其在醫療保健中的應用。本書解決了阻礙這些方法在現實臨床實踐中產生重大影響的未解問題。本書的目標是匯集在醫療相關背景中使用生成模型的各種方法論。本書利用深度生成模型的近期方法學進展,針對所有數據類型的關鍵醫療挑戰,為其在醫療系統中的實際整合鋪平道路,並提升其對未來醫療的影響。

作者簡介

Balasubramaniam S (IEEE Senior Member) is an Assistant Professor in Kerala University of Digital Sciences, Innovation and Technology (Formerly IIITM-K), Digital University Kerala, Thiruvananthapuram, India. Before joining Digital University Kerala, he was a Senior Associate Professor at the School of Computer Science and Engineering at the Vellore Institute of Technology (VIT), Chennai, India. He has around 15+ years of experience in teaching, research and industry. He has completed his postdoctoral research in the Department of Applied Data Science, Noroff University College, Kristiansand, Norway. He has a PhD in Computer Science and Engineering from Anna University, Chennai, India in 2015 and has published 25+ research papers in reputed SCI/WoS/Scopus indexed journals. He has also been granted 1 Australian patent and 2 Indian Patents and published 2 Indian patents. He has presented papers at conferences, contributed to and edited books published by global publishers. His research and publication interests include machine learning, deep and federated learning-based disease diagnosis, cloud computing security, Generative AI, and electric vehicles.

Seifedine Kadry has a bachelor's degree in 1999 from Lebanese University, MS degree in 2002 from Reims University, France and EPFL, Lausanne, Switzerland, PhD in 2007 from Blaise Pascal University, France, HDR degree in 2017 from Rouen University, France. At present his research focuses on data science, education using technology, system prognostics, stochastic systems, and applied mathematics. He is an ABET program evaluator for computing, and ABET program evaluator for Engineering Tech. He is a full professor of data science at Noroff University College, Norway and Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.

作者簡介(中文翻譯)

Balasubramaniam S(IEEE 高級會員)是印度特里凡得琅數位科學、創新與技術大學(前身為 IIITM-K)的助理教授。在加入特里凡得琅數位大學之前,他曾擔任印度金奈維洛爾科技學院(VIT)計算機科學與工程學院的高級副教授。他擁有超過 15 年的教學、研究和產業經驗。他在挪威克里斯蒂安桑的 Noroff 大學學院應用數據科學系完成了博士後研究。他於 2015 年在印度金奈的安娜大學獲得計算機科學與工程博士學位,並在知名的 SCI/WoS/Scopus 索引期刊上發表了 25 篇以上的研究論文。他還獲得了 1 項澳大利亞專利和 2 項印度專利,並發表了 2 項印度專利。他在會議上發表論文,並為全球出版商出版的書籍貢獻和編輯內容。他的研究和出版興趣包括機器學習、基於深度學習和聯邦學習的疾病診斷、雲計算安全、生成式 AI 和電動車。

Seifedine Kadry 於 1999 年在黎巴嫩大學獲得學士學位,2002 年在法國蘭斯大學和瑞士洛桑聯邦理工學院獲得碩士學位,2007 年在法國布萊茲·帕斯卡大學獲得博士學位,2017 年在法國魯昂大學獲得 HDR 學位。目前,他的研究重點是數據科學、利用技術的教育、系統預測、隨機系統和應用數學。他是計算機的 ABET 課程評估員和工程技術的 ABET 課程評估員。他是挪威 Noroff 大學學院的數據科學全職教授,以及黎巴嫩貝魯特黎巴嫩美國大學計算機科學與數學系的教授。