Data-Driven Fault Diagnosis: A Machine Learning Approach for Industrial Components
暫譯: 數據驅動的故障診斷:工業元件的機器學習方法
Vashishtha, Govind
- 出版商: CRC
- 出版日期: 2025-09-23
- 售價: $4,370
- 貴賓價: 9.5 折 $4,152
- 語言: 英文
- 頁數: 180
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1041011636
- ISBN-13: 9781041011637
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Data-Driven Fault Diagnosis delves into the application of machine learning techniques for achieving robust and efficient fault diagnosis in industrial components.
The book covers a range of key topics, including data acquisition and preprocessing, feature engineering, model selection and training, and real-time implementation of diagnostic systems. It examines popular machine learning algorithms like Support Vector Machines, Convolutional Neural Network, and Extreme Learning Machine, highlighting their strengths and limitations in different industrial contexts. Practical case studies and real-world examples from various sectors like manufacturing, energy, and transportation illustrate the real-world impact of these techniques.
The aim of this book is to empower engineers, data scientists, and researchers with the knowledge and tools necessary to implement data-driven fault diagnosis systems in their respective industrial domains.
商品描述(中文翻譯)
《數據驅動的故障診斷》深入探討了機器學習技術在工業元件中實現穩健且高效的故障診斷的應用。
本書涵蓋了一系列關鍵主題,包括數據獲取與預處理、特徵工程、模型選擇與訓練,以及診斷系統的即時實施。它檢視了流行的機器學習演算法,如支持向量機(Support Vector Machines)、卷積神經網絡(Convolutional Neural Network)和極限學習機(Extreme Learning Machine),並強調它們在不同工業背景下的優勢與限制。來自製造、能源和交通等各個領域的實際案例研究和真實世界範例展示了這些技術的實際影響。
本書的目標是使工程師、數據科學家和研究人員具備在各自工業領域中實施數據驅動故障診斷系統所需的知識和工具。
作者簡介
Govind Vashishtha received a PhD degree in Mechanical Engineering from the Sant Longowal Institute of Engineering and Technology, Longowal, India, in 2022. He is currently working as a Visiting Professor at Wroclaw University of Science and Technology, Wroclaw, Poland. He has authored over 70 research papers in Science Citation Index (SCI) journals and also edited one book. His name also appeared in the world's top 2% scientist list published by Stanford University in 2023 and 2024. He is also serving as Associate Editor in Frontiers in Mechanical Engineering, Shock and Vibration, Measurement and Engineering and Applications of Artificial Intelligence. He has two Indian patents. His H-index is 27 and has been cited in more than 1700 citations. His current research includes fault diagnosis of mechanical components, vibration and acoustic signal processing, identification/measurement, defect prognosis, machine learning and artificial intelligence.
作者簡介(中文翻譯)
**Govind Vashishtha** 於2022年獲得印度朗戈瓦爾工程技術學院的機械工程博士學位。目前,他擔任波蘭弗羅茨瓦夫科技大學的訪問教授。他在科學引文索引(SCI)期刊上發表了超過70篇研究論文,並編輯了一本書。他的名字於2023年和2024年出現在史丹佛大學發布的全球前2%科學家名單中。他還擔任《機械工程前沿》、《衝擊與振動》、《測量與工程》以及《人工智慧應用》的副編輯。他擁有兩項印度專利,H指數為27,引用次數超過1700次。他目前的研究包括機械元件的故障診斷、振動與聲學信號處理、識別/測量、缺陷預測、機器學習和人工智慧。