Inequalities and Integral Operators in Function Spaces
暫譯: 函數空間中的不等式與積分算子
Nursultanov, Erlan
- 出版商: CRC
- 出版日期: 2026-01-27
- 售價: $9,280
- 貴賓價: 9.5 折 $8,816
- 語言: 英文
- 頁數: 306
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1041126840
- ISBN-13: 9781041126843
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
相關主題
商品描述
The modern theory of functional spaces and operators, built on powerful analytical methods, continues to evolve in the search for more precise, universal, and effective tools. Classical inequalities such as Hardy's inequality, Remez's inequality, the Bernstein-Nikolsky inequality, the Hardy-Littlewood-Sobolev inequality for the Riesz transform, the Hardy-Littlewood inequality for Fourier transforms, O'Neil's inequality for the convolution operator, and others play a fundamental role in analysis, and their influence is hard to overestimate. With the development of new interpolation methods, new functional spaces, and novel problem formulations for functions of many variables, these inequalities have undergone significant advancements.
Inequalities and Integral Operators in Function Spaces focuses primarily on new approaches to the interpolation of spaces, which significantly extend the classical framework of the methods developed by Lions and Peetre. The book demonstrates how the use of net spaces and modern interpolation techniques not only provides a deeper understanding of the structure of functional spaces but also leads to stronger results that cannot be achieved within the traditional framework.
Features
- Can be used for specialized courses in harmonic analysis focusing on interpolation
- Suitable for both researchers in the field of real analysis and mathematicians interested in applying these methods to related areas
- Contains new and interesting results, previously unpublished.
商品描述(中文翻譯)
現代的函數空間與算子的理論,建立在強大的分析方法之上,持續演變以尋求更精確、普遍且有效的工具。經典不等式如哈代不等式(Hardy's inequality)、雷梅茲不等式(Remez's inequality)、伯恩斯坦-尼科爾斯基不等式(Bernstein-Nikolsky inequality)、哈代-利特伍德-索博列夫不等式(Hardy-Littlewood-Sobolev inequality)針對Riesz變換、哈代-利特伍德不等式(Hardy-Littlewood inequality)針對傅立葉變換、奧尼爾不等式(O'Neil's inequality)針對卷積算子等,在分析中扮演著基礎角色,其影響力難以高估。隨著新插值方法、新的函數空間以及針對多變數函數的新問題表述的發展,這些不等式已經取得了顯著的進展。
《函數空間中的不等式與積分算子》主要集中於對空間插值的新方法,這些方法顯著擴展了Lions和Peetre所發展的經典框架。本書展示了如何利用網格空間和現代插值技術,不僅提供了對函數空間結構的更深入理解,還導致了在傳統框架內無法實現的更強結果。
特色
- 可用於專注於插值的調和分析專門課程
- 適合從事實分析領域的研究人員及對將這些方法應用於相關領域感興趣的數學家
- 包含新的且有趣的結果,之前未曾發表。
作者簡介
Erlan Nursultanov is a Doctor of Physical and Mathematical Sciences and a Professor at the Kazakhstan Branch of Lomonosov Moscow State University. He graduated from the Faculty of Mathematics at Karaganda State University in 1979 and completed his postgraduate studies at the Faculty of Mechanics and Mathematics of Moscow State University in 1982. He received his PhD in Mathematics in 1983 (MSU) and his Doctor of Sciences degree in 1999 from the Steklov Mathematical Institute of the Russian Academy of Sciences. His research interests include harmonic analysis, operator theory, interpolation of function spaces, and approximation theory. He is the author of over 100 scientific publications.
作者簡介(中文翻譯)
Erlan Nursultanov 是物理與數學科學博士,並且是哈薩克斯坦羅蒙諾索夫莫斯科國立大學的教授。他於1979年畢業於卡拉干達國立大學數學系,並於1982年在莫斯科國立大學機械與數學系完成研究生學業。他於1983年獲得數學博士學位(莫斯科國立大學),並於1999年從俄羅斯科學院斯捷克洛夫數學研究所獲得科學博士學位。他的研究興趣包括調和分析、算子理論、函數空間的插值以及逼近理論。他是超過100篇科學出版物的作者。