Burnout Intervention Mechanisms for Online Learning Processes Enabled by Predictive Learning Analytics
暫譯: 基於預測學習分析的線上學習過程疲勞干預機制

Xia, Xiaona, Qi, Wanxue

  • 出版商: Routledge
  • 出版日期: 2025-09-30
  • 售價: $7,350
  • 貴賓價: 9.5$6,983
  • 語言: 英文
  • 頁數: 204
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1041134088
  • ISBN-13: 9781041134084
  • 相關分類: Data-visualization
  • 海外代購書籍(需單獨結帳)

商品描述

This title aims to fully demonstrate the burnout of students in online learning processes. The authors propose a series of feasible and reliable solutions to sufficiently obtain and analyze massive instances of online learning behavior.

In order to flexibly perceive and intervene in the "burnout state" and improve online learning processes and learning effectiveness, the authors design and construct various novel data analysis models and decision prediction methods using technological means and data-driven learning strategies. Their innovative methods, techniques, and decisions would benefit autonomous learning behavior tracking and stimulate the learning interest of online learning processes enabled by predictive learning analytics. By employing behavioral science research strategies, they build adaptive prediction and optimization measures for positive online learning patterns, improve learning behaviors, optimize learning states, and establish dynamic and sustainable knowledge tracing paths and behavior scheduling methods, enabling users to achieve self-organization and self-mobilization in their overall learning processes.

The title will appeal to scholars and students in Europe, North America, and Asia, especially those majoring in educational statistics and measurement, educational big data, learning analytics, educational psychology, artificial intelligence in education, computer science, and online collaborative learning.

商品描述(中文翻譯)

這本書的標題旨在充分展示學生在在線學習過程中的倦怠情況。作者提出了一系列可行且可靠的解決方案,以充分獲取和分析大量的在線學習行為實例。

為了靈活感知和介入「倦怠狀態」,並改善在線學習過程和學習效果,作者利用技術手段和數據驅動的學習策略設計和構建各種新穎的數據分析模型和決策預測方法。他們的創新方法、技術和決策將有助於自主學習行為的追蹤,並激發在線學習過程中由預測學習分析所促進的學習興趣。通過採用行為科學研究策略,他們建立了針對正向在線學習模式的自適應預測和優化措施,改善學習行為,優化學習狀態,並建立動態和可持續的知識追蹤路徑及行為排程方法,使使用者能夠在整體學習過程中實現自我組織和自我動員。

這本書將吸引歐洲、北美和亞洲的學者和學生,特別是那些主修教育統計與測量、教育大數據、學習分析、教育心理學、教育中的人工智慧、計算機科學和在線協作學習的讀者。

作者簡介

Xiaona Xia is a professor at Qufu Normal University. She is a member of Institute of Electrical and Electronics Engineers and China Computer Federation. Her research interests include learning analytics, interactive learning environments, collaborative learning, educational big data, educational statistics, data mining, service computing, etc.

Wanxue Qi is a professor at Qufu Normal University. He is an established educational expert in higher education and moral education. His research interests include educational big data, moral education, etc.

作者簡介(中文翻譯)

夏娜 夏是曲阜師範大學的教授。她是電氣與電子工程師學會(Institute of Electrical and Electronics Engineers)和中國計算機學會(China Computer Federation)的成員。她的研究興趣包括學習分析、互動學習環境、協作學習、教育大數據、教育統計、資料探勘、服務計算等。

萬學 啟是曲阜師範大學的教授。他是高等教育和德育方面的知名教育專家。他的研究興趣包括教育大數據、德育等。