Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics (Paperback)
暫譯: 數據科學的基本數學:掌握線性代數、機率與統計的基礎知識
Nield, Thomas
- 出版商: O'Reilly
- 出版日期: 2022-07-05
- 定價: $2,350
- 售價: 8.0 折 $1,880
- 語言: 英文
- 頁數: 347
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098102932
- ISBN-13: 9781098102937
-
相關分類:
機率統計學 Probability-and-statistics、Python
-
相關翻譯:
資料科學基礎數學 (Essential Math for Data Science) (繁中版)
立即出貨
買這商品的人也買了...
-
$1,680Numerical Methods with VBA Programming (Paperback) -
Docker 編配的奧義 (Orchestrating Docker)$280$218 -
$556ANSYS FLUENT 16.0 超級學習手冊 -
振動學, 2/e$500$490 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
用 Javascript 一統前後端:御用語言 Node.js 出巡 Web$490$417 -
Python 也可以這樣學$580$452 -
Docker 這樣學才有趣:從入門,到玩直播、挖礦$450$356 -
Python:期貨演算法交易實務 121個關鍵技巧詳解$500$390 -
彈性力學$620$608 -
tf.keras 技術者們必讀!深度學習攻略手冊$1,000$850 -
Data Science and Machine Learning: Mathematical and Statistical Methods$3,980$3,781 -
How Charts Lie: Getting Smarter about Visual Information$1,120$1,064 -
Python 刷題鍛鍊班:老手都刷過的 50 道程式題, 求職面試最給力 (Python Workout: 50 ten-minute exercises)$480$379 -
Inside Deep Learning: Math, Algorithms, Models (Paperback)$2,100$1,995 -
PyTorch 深度學習入門與應用:必備實作知識與工具一本就學會$600$468 -
Practical Linear Algebra for Data Science: From Core Concepts to Applications Using Python (Paperback)$2,594$2,457 -
Python 資料結構×演算法 刷題鍛鍊班:234 題帶你突破 Coding 面試的難關$650$513 -
有限元方法基礎教程, 6/e (國際單位製版) (A First Course in the Finite Element Method, Enhanced Edition, SI Version, 6/e)$1,014$963 -
圖解馬達一本通:輕鬆掌握電機核心的馬達原理與構造$360$284 -
$370ANSYS Workbench 結構與流體實例應用 -
無人機原理與實務 (含多旋翼無人機證照)$400$360 -
AI 加持!Google Sheets 超級工作流$599$473 -
寫程式的 AI 戰友 – VS Code x GitHub Copilot$720$569 -
Google Cloud 從雲端小白到黑帶高手!雲端架構設計、實戰操作、證照攻略與轉職指南$680$530
相關主題
商品描述
Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career.
Learn how to:
- Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning
- Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon
- Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance
- Manipulate vectors and matrices and perform matrix decomposition
- Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks
- Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market
商品描述(中文翻譯)
掌握在數據科學、機器學習和統計學中脫穎而所需的數學知識。在這本書中,作者 Thomas Nield 將引導您了解微積分、機率、線性代數和統計學等領域,以及它們如何應用於線性回歸、邏輯回歸和神經網絡等技術。在這個過程中,您還將獲得有關數據科學現狀的實用見解,並學會如何利用這些見解來最大化您的職業生涯。
學習如何:
- 使用 Python 代碼和庫,如 SymPy、NumPy 和 scikit-learn,探索微積分、線性代數、統計學和機器學習等基本數學概念
- 用簡單的英語理解線性回歸、邏輯回歸和神經網絡等技術,並盡量減少數學符號和行話
- 對數據集執行描述性統計和假設檢驗,以解釋 p 值和統計顯著性
- 操作向量和矩陣並執行矩陣分解
- 整合並建立微積分、機率、統計學和線性代數的增量知識,並將其應用於包括神經網絡在內的回歸模型
- 實際導航數據科學職業生涯,避免常見的陷阱、假設和偏見,同時調整您的技能組合以在就業市場中脫穎而出