Reinforcement Learning for Finance: A Python-Based Introduction (Paperback)
暫譯: 金融強化學習:基於Python的入門指南(平裝本)
Hilpisch, Yves J.
- 出版商: O'Reilly
- 出版日期: 2024-11-19
- 定價: $2,480
- 售價: 9.5 折 $2,356
- 貴賓價: 9.0 折 $2,232
- 語言: 英文
- 頁數: 212
- 裝訂: Quality Paper - also called trade paper
- ISBN: 109816914X
- ISBN-13: 9781098169145
-
相關分類:
Reinforcement、Python、Fintech
立即出貨
買這商品的人也買了...
-
簡報原力 ─ 邁向完美簡報的十堂必修課$320$272 -
如何衡量萬事萬物:大數據時代,做好量化決策、分析的有效方法 (How to Measure Anything: Finding the Value of$480$379 -
$308了不起的 Markdown -
大數據資料可視化:Python QT GUI 程式設計$880$695 -
Machine Learning for Algorithmic Trading, 2/e (Paperback)$2,100$1,995 -
經理人之道:技術領袖航向成長與改變的參考指南 (The Manager's Path: A Guide for Tech Leaders Navigating Growth and Change)$480$379 -
工業機器手臂控制實務$400$380 -
$1,980Training Data for Machine Learning: Human Supervision from Annotation to Data Science -
Deep Learning for Finance: Creating Machine & Deep Learning Models for Trading in Python$2,195$2,079 -
AI 神助攻!程式設計新境界 – GitHub Copilot 開發 Python 如虎添翼 : 提示工程、問題分解、測試案例、除錯$560$442 -
資料科學:困難部分 (Data Science: The Hard Parts: Techniques for Excelling at Data Science)$680$537 -
Python 金融數據分析$1,074$1,020 -
LLM 大型語言模型的絕世祕笈:27路獨步劍法,帶你闖蕩生成式 AI 的五湖四海 (iThome鐵人賽系列書)$650$507 -
AI 時代的資料科學:小白到數據專家的全面指南$1,080$853 -
Python x AI 辦公室作業自動化 : Word、Excel、PowerPoint、PDF、CSV、Pandas -- 多執行緒、排程、藝術二維碼、短網址、電子郵件、爬蟲$880$695 -
全面掌握生成式 AI 與 LLM 開發實務:NLP × PyTorch × GPT 輕鬆打造專屬的大型語言模型(iThome鐵人賽系列書)$620$484 -
Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)$2,565$2,430 -
資安鑑識分析:數位工具、情資安全、犯罪偵防與證據追蹤$560$437 -
$2,520AI Engineering : Building Applications with Foundation Models (Paperback) -
讓 AI 好好說話!從頭打造 LLM (大型語言模型) 實戰秘笈$680$537 -
生成式 AI 入門 – 揭開 LLM 潘朵拉的秘密 : 語言建模、訓練微調、隱私風險、合成媒體、認知作戰、社交工程、人機關係、AI Agent、OpenAI、DeepSeek (Introduction to Generative AI)$580$458 -
版本控制使用 Git, 3/e (Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development, 3/e)$880$695 -
Microsoft Azure 學習手冊|雲端運算與雲端系統開發的關鍵知識 (Learning Microsoft Azure: Cloud Computing and Development Fundamentals)$880$695 -
Microsoft Azure AI Services 與 Azure OpenAI 開發基礎必修課 -- 使用 C#$550$435 -
AI 應用程式開發|活用 ChatGPT 與 LLM 技術開發實作, 2/e (Developing Apps with GPT-4 and ChatGPT: Build Intelligent Chatbots, Content Generators, and More, 2/e)$680$537
商品描述
Reinforcement learning (RL) has led to several breakthroughs in AI. The use of the Q-learning (DQL) algorithm alone has helped people develop agents that play arcade games and board games at a superhuman level. More recently, RL, DQL, and similar methods have gained popularity in publications related to financial research.
This book is among the first to explore the use of reinforcement learning methods in finance.
Author Yves Hilpisch, founder and CEO of The Python Quants, provides the background you need in concise fashion. ML practitioners, financial traders, portfolio managers, strategists, and analysts will focus on the implementation of these algorithms in the form of self-contained Python code and the application to important financial problems.
This book covers:
- Reinforcement learning
- Deep Q-learning
- Python implementations of these algorithms
- How to apply the algorithms to financial problems such as algorithmic trading, dynamic hedging, and dynamic asset allocation
This book is the ideal reference on this topic. You'll read it once, change the examples according to your needs or ideas, and refer to it whenever you work with RL for finance.
Dr. Yves Hilpisch is founder and CEO of The Python Quants, a group that focuses on the use of open source technologies for financial data science, AI, asset management, algorithmic trading, and computational finance.
商品描述(中文翻譯)
強化學習(Reinforcement Learning, RL)在人工智慧(AI)領域帶來了幾項突破。僅僅使用 Q-learning(深度 Q 學習,DQL)演算法,就幫助人們開發出能以超人類水平玩街機遊戲和棋盤遊戲的代理程式。最近,RL、DQL 及類似方法在與金融研究相關的出版物中變得越來越受歡迎。
本書是首批探討強化學習方法在金融領域應用的書籍之一。
作者 Yves Hilpisch 是 The Python Quants 的創辦人兼執行長,他以簡潔的方式提供所需的背景知識。機器學習(ML)從業者、金融交易員、投資組合經理、策略師和分析師將專注於這些演算法的實作,並以獨立的 Python 代碼形式應用於重要的金融問題。
本書涵蓋的內容包括:
- 強化學習
- 深度 Q 學習
- 這些演算法的 Python 實作
- 如何將演算法應用於金融問題,例如算法交易、動態對沖和動態資產配置
本書是該主題的理想參考資料。您可以閱讀一次,根據自己的需求或想法更改範例,並在進行金融強化學習時隨時參考。
*Yves Hilpisch 博士是 The Python Quants 的創辦人兼執行長,該團體專注於使用開源技術進行金融數據科學、人工智慧、資產管理、算法交易和計算金融。*