Deep Learning for Finance: Creating Machine & Deep Learning Models for Trading in Python
暫譯: 金融深度學習:在Python中為交易創建機器學習與深度學習模型
Kaabar, Sofien
- 出版商: O'Reilly
- 出版日期: 2024-02-13
- 定價: $2,310
- 售價: 9.5 折 $2,195
- 貴賓價: 9.0 折 $2,079
- 語言: 英文
- 頁數: 359
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098148398
- ISBN-13: 9781098148393
-
相關分類:
DeepLearning、程式交易 Trading、Python
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
簡報原力 ─ 邁向完美簡報的十堂必修課$320$272 -
Machine Learning for Algorithmic Trading, 2/e (Paperback)$2,100$1,995 -
$2,592Artificial Intelligence in Finance: A Python-Based Guide -
經理人之道:技術領袖航向成長與改變的參考指南 (The Manager's Path: A Guide for Tech Leaders Navigating Growth and Change)$480$379 -
機器視覺從入門到提高$414$393 -
工業機器手臂控制實務$400$380 -
Mastering Financial Pattern Recognition: Finding and Back-Testing Candlestick Patterns with Python$2,641$2,502 -
$1,980Training Data for Machine Learning: Human Supervision from Annotation to Data Science -
精通機器學習|使用 Scikit-Learn , Keras 與 TensorFlow, 3/e (Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e)$1,200$948 -
內網滲透實戰攻略$594$564 -
Power BI x Copilot x ChatGPT 商業報表設計入門:資料清理、資料模型、資料視覺化到報表共享建立全局觀念$630$497 -
AI 神助攻!程式設計新境界 – GitHub Copilot 開發 Python 如虎添翼 : 提示工程、問題分解、測試案例、除錯$560$442 -
生成式 AI:以 ChatGPT 與 OpenAI 模型實現高效創新 (Modern Generative AI with ChatGPT and OpenAI Models)$500$395 -
資料科學:困難部分 (Data Science: The Hard Parts: Techniques for Excelling at Data Science)$680$537 -
Python 金融數據分析$1,074$1,020 -
Python x AI 辦公室作業自動化 : Word、Excel、PowerPoint、PDF、CSV、Pandas -- 多執行緒、排程、藝術二維碼、短網址、電子郵件、爬蟲$880$695 -
Reinforcement Learning for Finance: A Python-Based Introduction (Paperback)$2,356$2,232 -
Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)$2,565$2,430 -
$2,520AI Engineering : Building Applications with Foundation Models (Paperback) -
讓 AI 好好說話!從頭打造 LLM (大型語言模型) 實戰秘笈$680$537 -
生成式 AI 入門 – 揭開 LLM 潘朵拉的秘密 : 語言建模、訓練微調、隱私風險、合成媒體、認知作戰、社交工程、人機關係、AI Agent、OpenAI、DeepSeek (Introduction to Generative AI)$580$458 -
版本控制使用 Git, 3/e (Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development, 3/e)$880$695 -
Microsoft Azure 學習手冊|雲端運算與雲端系統開發的關鍵知識 (Learning Microsoft Azure: Cloud Computing and Development Fundamentals)$880$695 -
Microsoft Azure AI Services 與 Azure OpenAI 開發基礎必修課 -- 使用 C#$550$435 -
AI 應用程式開發|活用 ChatGPT 與 LLM 技術開發實作, 2/e (Developing Apps with GPT-4 and ChatGPT: Build Intelligent Chatbots, Content Generators, and More, 2/e)$680$537
商品描述
Deep learning is rapidly gaining momentum in the world of finance and trading. But for many professional traders, this sophisticated field has a reputation for being complex and difficult. This hands-on guide teaches you how to develop a deep learning trading model from scratch using Python, and it also helps you create, trade, and back-test trading algorithms based on machine learning and reinforcement learning.
Sofien Kaabar--financial author, trading consultant, and institutional market strategist--introduces deep learning strategies that combine technical and quantitative analyses. By fusing deep learning concepts with technical analysis, this unique book presents out-of-the-box ideas in the world of financial trading. This A-Z guide also includes a full introduction to technical analysis, evaluating machine learning algorithms, and algorithm optimization.
- Create and understand machine learning and deep learning models
- Explore the details behind reinforcement learning and see how it's used in trading
- Understand how to interpret performance evaluation metrics
- Examine technical analysis and learn how it works in financial markets
- Create technical indicators in Python and combine them with ML models for optimization
- Evaluate the profitability and the predictability of the models to understand their limitations and potential
商品描述(中文翻譯)
深度學習在金融和交易領域迅速獲得動能。然而,對於許多專業交易者來說,這個複雜的領域有著難以理解的聲譽。本實用指南教您如何使用 Python 從零開始開發深度學習交易模型,並幫助您基於機器學習和強化學習創建、交易和回測交易算法。
Sofien Kaabar——金融作家、交易顧問和機構市場策略師——介紹了結合技術分析和量化分析的深度學習策略。通過將深度學習概念與技術分析相融合,這本獨特的書籍在金融交易的世界中提出了創新的想法。這本 A-Z 指南還包括技術分析的完整介紹、評估機器學習算法和算法優化。
- 創建和理解機器學習及深度學習模型
- 探索強化學習背後的細節,並了解其在交易中的應用
- 理解如何解釋性能評估指標
- 檢視技術分析並學習其在金融市場中的運作方式
- 在 Python 中創建技術指標,並將其與機器學習模型結合以進行優化
- 評估模型的盈利能力和可預測性,以了解其限制和潛力