Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction (Institute of Mathematical Statistics Monographs)
Bradley Efron
- 出版商: Cambridge
- 出版日期: 2013-01-14
- 售價: $2,240
- 貴賓價: 9.5 折 $2,128
- 語言: 英文
- 頁數: 276
- 裝訂: Paperback
- ISBN: 110761967X
- ISBN-13: 9781107619678
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,568$1,485 -
$3,680$3,496 -
$1,925Machine Learning: A Probabilistic Perspective
-
$3,500$3,325 -
$1,260$1,235 -
$2,980$2,831 -
$1,750$1,663 -
$1,529Introduction to the Theory of Computation, 3/e (Hardcover)
-
$2,880$2,736 -
$4,200$3,990 -
$7,100$6,745 -
$1,680$1,646 -
$2,500$2,375 -
$2,850$2,708 -
$1,990$1,891
相關主題
商品描述
We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing, and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.