A First Course in Differential Geometry (Paperback)
暫譯: 微分幾何入門課程 (平裝本)
Woodward, Lyndon, Bolton, John
- 出版商: Cambridge
- 出版日期: 2018-11-29
- 售價: $880
- 貴賓價: 9.8 折 $862
- 語言: 英文
- 頁數: 272
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1108441025
- ISBN-13: 9781108441025
-
相關分類:
微積分 Calculus
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
Thermal Physics, 2/e (Hardcover)$700$686 -
Path Integrals in Quantum Mechanics (Paperback)$3,220$3,059 -
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
你所不知道的 JS|ES6 與未來發展 (You Don't Know JS: ES6 & Beyond)$520$411 -
無瑕的程式碼-敏捷完整篇-物件導向原則、設計模式與 C# 實踐 (Agile principles, patterns, and practices in C#)$790$616 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
Soft Skills 軟實力|軟體開發人員的生存手冊 (Soft Skills: The software developer's life manual)$520$411 -
為你自己學 Git$500$425 -
無瑕的程式碼-整潔的軟體設計與架構篇 (Clean Architecture: A Craftsman's Guide to Software Structure and Design)$580$452 -
Lectures of Sidney Coleman on Quantum Field Theory (Paperback)$1,960$1,921 -
Introduction to Algebraic Geometry (Paperback)$790$751 -
領域驅動設計:軟體核心複雜度的解決方法 (Domain-Driven Design: Tackling Complexity in the Heart of Software)$680$530 -
Spacetime and Geometry: An Introduction to General Relativity (Hardcover)$1,680$1,646 -
I'm From Taiwan / Programmer 阿喵宅造型貼紙7X7公分 (粉色)$69$60 -
阿喵宅開發順利春聯 2入$68$68 -
白話演算法!培養程式設計的邏輯思考 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$520$468 -
比 Docker 再高階一步:使用 Harbor 完成 Helm Chart 容器及鏡像雲端原生管理$880$695 -
超圖解 ESP32 深度實作$880$695 -
資料科學的建模基礎 : 別急著 coding!你知道模型的陷阱嗎?$599$509 -
Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts (Paperback)$1,460$1,431 -
你所不知道的必學前端 Debug 技巧:即學即用!讓你 Debug 不求人 (iT邦幫忙鐵人賽系列書)$620$484 -
Connecting Discrete Mathematics and Computer Science (Hardcover)$1,680$1,646 -
C++ Game Animation Programming - Second Edition: Learn modern animation techniques from theory to implementation using C++, OpenGL, and Vulkan (Paperback)$1,800$1,710 -
Final Cut Pro 視頻後期剪輯零基礎入門到精通$599$569
相關主題
商品描述
Differential geometry is the study of curved spaces using the techniques of calculus. It is a mainstay of undergraduate mathematics education and a cornerstone of modern geometry. It is also the language used by Einstein to express general relativity, and so is an essential tool for astronomers and theoretical physicists. This introductory textbook originates from a popular course given to third year students at Durham University for over twenty years, first by the late L. M. Woodward and later by John Bolton (and others). It provides a thorough introduction by focusing on the beginnings of the subject as studied by Gauss: curves and surfaces in Euclidean space. While the main topics are the classics of differential geometry - the definition and geometric meaning of Gaussian curvature, the Theorema Egregium, geodesics, and the Gauss-Bonnet Theorem - the treatment is modern and student-friendly, taking direct routes to explain, prove and apply the main results. It includes many exercises to test students' understanding of the material, and ends with a supplementary chapter on minimal surfaces that could be used as an extension towards advanced courses or as a source of student projects.
商品描述(中文翻譯)
微分幾何是利用微積分技術研究曲面空間的學科。它是本科數學教育的基石,也是現代幾何的核心。它同時也是愛因斯坦表達廣義相對論所使用的語言,因此對於天文學家和理論物理學家來說,是一個必不可少的工具。本教科書源自於達勒姆大學(Durham University)為期超過二十年的熱門課程,最初由已故的 L. M. Woodward 教授授課,後來由 John Bolton(及其他人)接手。這本書通過專注於高斯所研究的主題的起源:歐幾里得空間中的曲線和曲面,提供了徹底的介紹。雖然主要主題是微分幾何的經典內容——高斯曲率的定義及幾何意義、著名定理(Theorema Egregium)、測地線以及高斯-博內定理(Gauss-Bonnet Theorem),但其處理方式現代且友好,直接解釋、證明和應用主要結果。書中包含許多練習題,以測試學生對材料的理解,並以一章補充內容結束,該章節關於最小曲面,可用作進階課程的延伸或學生專案的來源。
目錄大綱
Preface
1. Curves in Rn
2. Surfaces in Rn
3. Tangent planes and the first fundamental form
4. Smooth maps
5. Measuring how surfaces curve
6. The Theorema Egregium
7. Geodesic curvature and geodesics
8. The Gauss–Bonnet theorem
9. Minimal and CMC surfaces
10. Hints or answers to some exercises
Index.
目錄大綱(中文翻譯)
Preface
1. Curves in Rn
2. Surfaces in Rn
3. Tangent planes and the first fundamental form
4. Smooth maps
5. Measuring how surfaces curve
6. The Theorema Egregium
7. Geodesic curvature and geodesics
8. The Gauss–Bonnet theorem
9. Minimal and CMC surfaces
10. Hints or answers to some exercises
Index.
