Nonlinear Filters: Theory and Applications (Hardcover)
暫譯: 非線性濾波器:理論與應用(精裝版)
Setoodeh, Peyman, Habibi, Saeid, Haykin, Simon
- 出版商: Wiley
- 出版日期: 2022-04-12
- 售價: $1,790
- 貴賓價: 9.8 折 $1,754
- 語言: 英文
- 頁數: 304
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1118835816
- ISBN-13: 9781118835814
-
相關分類:
Reinforcement
立即出貨 (庫存=1)
買這商品的人也買了...
-
Switching Power Supply Design, 3/e (IE-Hardcover)$1,400$1,372 -
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Optoelectronics and Photonics: Principles and Practices, 2/e (IE-Paperback)$1,290$1,264 -
Synchronization Techniques for Digital Receivers (Hardcover)$14,800$14,060 -
Chaotic Dynamics of Nonlinear Systems (Paperback)$750$735 -
A First Course in Graph Theory (Paperback)$1,200$1,140 -
矽谷潑猴:直擊臉書、谷歌、推特的瘋狂內幕,及他們如何影響我們的生活 (Chaos Monkeys: Obscene Fortune and Random Failure in Silicon Valley)$480$408 -
有機化學天堂秘笈I+II (套書)$850$723 -
Nonlinear Dynamics: A Hands-On Introductory Survey$2,690$2,556 -
$301人工智能算法 捲1 基礎算法 -
敏捷大師精選 (Best Agile Articles of 2018)$750$585 -
$458人工智能算法 捲3 深度學習和神經網絡 -
設計重構:25個管理技術債的技巧消除軟體設計臭味 (Refactoring for Software Design Smells: Managing Technical Debt)$520$406 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
深度學習: 邁向 Meta Learning$880$695 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Switched Time-Delay Systems: Stability and Control (Hardcover)$6,800$6,460 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
打造敏捷企業:在多變的時代,徹底提升組織和個人效能的敏捷管理法$520$411 -
$602MATLAB 信號處理, 2/e -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
控制之美 (捲2) - 最優化控制 MPC 與卡爾曼濾波器$474$450 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748
相關主題
商品描述
NONLINEAR FILTERS
Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource
Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms.
Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy:
- Organization that allows the book to act as a stand-alone, self-contained reference
- A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines
- A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter
- A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values
- A concise tutorial on deep learning and reinforcement learning
- A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation
- Guidelines for constructing nonparametric Bayesian models from parametric ones
Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.
商品描述(中文翻譯)
非線性濾波器
透過這本深具洞察力且強大的新資源,發現使用深度學習和(深度)強化學習推導濾波演算法的效用
非線性濾波器:理論與應用 提供了一個關於狀態和參數估計的深刻視角,融合了控制理論、統計信號處理和機器學習的理念。這本書採取演算法的方式,涵蓋了經典和基於機器學習的濾波演算法。
非線性濾波器 的讀者將從廣泛的主題中獲益,包括穩定性、魯棒性、可計算性和演算法的充分性。讀者還將享受:
- 組織結構使得本書可以作為獨立的、自足的參考資料
- 對可觀測性、非線性觀測器和最佳非線性濾波理論的深入探討,彌合不同科學和工程學科之間的鴻溝
- 對貝葉斯濾波器的深刻闡述,包括卡爾曼濾波器及其變體,以及粒子濾波器
- 基於穩定性定理的預測-修正估計器的平滑變量結構濾波器的嚴謹推導,用於將估計的狀態限制在其真實值的鄰域內
- 關於深度學習和強化學習的簡明教程
- 期望最大化演算法及其基於機器學習的變體的詳細介紹,用於聯合狀態和參數估計
- 從參數模型構建非參數貝葉斯模型的指導方針
這本書非常適合工程、計算機科學、應用數學和人工智慧領域的研究人員、教授和研究生,非線性濾波器:理論與應用 也將在研究或實踐涉及流行病、網路安全、資訊融合、擴增實境、自動駕駛、城市交通網路、導航與追蹤、機器人技術、電力系統、混合技術和金融等領域的人士的圖書館中佔有一席之地。
作者簡介
Peyman Setoodeh, PhD, is Visiting Professor with the Centre for Mechatronics and Hybrid Technologies (CMHT) at McMaster University. He is a Senior Member of the IEEE.
Saeid Habibi, PhD, is Professor and former Chair of the Department of Mechanical Engineering and the Director of the Centre for Mechatronics and Hybrid Technologies (CMHT) at McMaster University. He is a Fellow of the ASME and the CSME as well as a Canada Research Chair and a Senior NSERC Industrial Research Chair.
Simon Haykin, PhD, is Distinguished University Professor with the Department of Electrical and Computer Engineering and the Director of the Cognitive Systems Laboratory (CSL) at McMaster University. He is a Fellow of the IEEE and the Royal Society of Canada. He is a recipient of the Henry Booker Gold Medal from the International Union of Radio Science, the IEEE James H. Mulligan Jr. Education Medal, and the IEEE Denis J. Picard Medal for Radar Technologies and Applications.
作者簡介(中文翻譯)
Peyman Setoodeh, PhD, 是麥克馬斯特大學機電一體化與混合技術中心 (CMHT) 的訪問教授。他是IEEE的高級會員。
Saeid Habibi, PhD, 是麥克馬斯特大學機械工程系的教授及前系主任,也是機電一體化與混合技術中心 (CMHT) 的主任。他是ASME和CSME的會士,並擔任加拿大研究主席及高級NSERC工業研究主席。
Simon Haykin, PhD, 是麥克馬斯特大學電機與計算機工程系的傑出大學教授,也是認知系統實驗室 (CSL) 的主任。他是IEEE和加拿大皇家學會的會士。他曾獲得國際無線科學聯合會的亨利·布克金獎、IEEE詹姆斯·H·穆利根教育獎章,以及IEEE丹尼斯·J·皮卡德雷達技術與應用獎章。