Machine Learning: A Concise Introduction
暫譯: 機器學習:簡明介紹
Knox, Steven W.
- 出版商: Wiley
- 出版日期: 2026-02-04
- 售價: $3,580
- 貴賓價: 9.5 折 $3,401
- 語言: 英文
- 頁數: 448
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1394325258
- ISBN-13: 9781394325252
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
New edition of a PROSE award finalist title on core concepts for machine learning, updated with the latest developments in the field, now with Python and R source code side-by-side
Machine Learning is a comprehensive text on the core concepts, approaches, and applications of machine learning. It presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. New content for this edition includes chapter expansions which provide further computational and algorithmic insights to improve reader understanding. This edition also revises several chapters to account for developments since the prior edition.
In this book, the design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods, enabling readers to solve applied problems more efficiently and effectively. This book also includes methods for optimization, risk estimation, model selection, and dealing with biased data samples and software limitations -- essential elements of most applied projects.
Written by an expert in the field, this important resource:
- Illustrates many classification methods with a single, running example, highlighting similarities and differences between methods
- Presents side-by-side Python and R source code which shows how to apply and interpret many of the techniques covered
- Includes many thoughtful exercises as an integral part of the text, with an appendix of selected solutions
- Contains useful information for effectively communicating with clients on both technical and ethical topics
- Details classification techniques including likelihood methods, prototype methods, neural networks, classification trees, and support vector machines
A volume in the popular Wiley Series in Probability and Statistics, Machine Learning offers the practical information needed for an understanding of the methods and application of machine learning for advanced undergraduate and beginner graduate students, data science and machine learning practitioners, and other technical professionals in adjacent fields.
商品描述(中文翻譯)
最新版本的PROSE獎決選書籍,涵蓋機器學習的核心概念,並更新了該領域的最新發展,現在提供Python和R的源代碼並排顯示
機器學習 是一本全面介紹機器學習核心概念、方法和應用的書籍。它呈現了解決分類、回歸、聚類、密度估計和降維等應用問題的基本思想、術語和技術。本版新增內容包括章節擴展,提供進一步的計算和算法見解,以增進讀者的理解。本版還修訂了幾個章節,以考慮自上版以來的發展。
在本書中,強調了技術背後的設計原則,包括偏差-方差權衡及其對集成方法設計的影響,使讀者能夠更高效和有效地解決應用問題。本書還包括優化、風險估計、模型選擇以及處理偏見數據樣本和軟體限制的方法——這些都是大多數應用項目的基本要素。
由該領域的專家撰寫,這本重要資源:
- 用一個持續的例子說明許多分類方法,突顯方法之間的相似性和差異
- 提供並排的Python和R源代碼,展示如何應用和解釋許多涵蓋的技術
- 包含許多深思熟慮的練習,作為文本的不可或缺部分,並附有選定解答的附錄
- 提供有效與客戶溝通技術和倫理主題的有用資訊
- 詳細介紹分類技術,包括似然方法、原型方法、神經網絡、分類樹和支持向量機
作為受歡迎的Wiley概率與統計系列中的一卷,機器學習 提供了理解機器學習方法和應用所需的實用資訊,適合高級本科生和初學研究生、數據科學和機器學習從業者,以及其他相關領域的技術專業人士。
作者簡介
Steven W. Knox holds a Ph.D. in Mathematics from the University of Illinois and an M.S. in Statistics from Carnegie Mellon University. He has almost thirty years' experience in using Machine Learning, Statistics, and Mathematics to solve real-world problems. He is currently a Data Science Subject Matter Expert at the National Security Agency, where he has also served as Technical Director of Mathematics Research and in other senior technical and leadership roles.
作者簡介(中文翻譯)
史蒂芬·W·諾克斯擁有伊利諾伊大學的數學博士學位以及卡內基梅隆大學的統計碩士學位。他在使用機器學習、統計學和數學解決現實世界問題方面擁有近三十年的經驗。目前,他是國家安全局的數據科學主題專家,並曾擔任數學研究的技術總監及其他高級技術和領導職位。