Linear Algebra: A Geometric Approach, 2/e (Hardcorver)
暫譯: 線性代數:幾何方法,第2版 (精裝本)

Ted Shifrin, Malcolm Adams

  • 出版商: W. H. Freeman
  • 出版日期: 2010-07-30
  • 售價: $1,050
  • 貴賓價: 9.8$1,029
  • 語言: 英文
  • 頁數: 464
  • 裝訂: Hardcover
  • ISBN: 1429215216
  • ISBN-13: 9781429215213
  • 相關分類: 數學
  • 無法訂購

相關主題

商品描述

<內容簡介>

Linear Algebra: A Geometric Approach, Second Edition, presents the standard computational aspects of linear algebra and includes a variety of intriguing interesting applications that would be interesting to motivate science and engineering students, as well as help mathematics students make the transition to more abstract advanced courses. The text guides students on how to think about mathematical concepts and write rigorous mathematical arguments.

Geometry is introduced early, using vector algebra to analytic geometry in the first section and dot product in the second.

Concepts and understanding is emphasized, doing proofs in text and providing plenty of exercises. To aid the student in adjusting to the mathematical rigor, blue boxes are provided which discuss matters of logic and proof technique or advice on formulating problem-solving strategies.

Rotations, reflections, and projections are used as a first brush with the notion of linear transformation when introducing matrix multiplication. Linear transformations are then treated in concert with the discussion of projections. Thus, the change-of-basis formula is motivated by starting with a coordinate system in which a geometrically defined linear transformation is clearly understood and asking for its standard matrix.

Orthogonal complements are emphasized, with their role in finding a homogenous system of linear equations that defines a given subspace of Rn.


 <章節目錄>

Chapter 1. Vectors and Matrices
1. Vectors
2. Dot Product
3. Hyperplanes in Rn
4. Systems of Linear Equations and Gaussian Elimination
5. The Theory of Linear Systems
6. Some Applications

Chapter 2. Matrix Algebra
1. Matrix Operations
2. Linear Transformations: An Introduction
3. Inverse Matrices
4. Elementary Matrices: Rows get Equal Time
5. The Transpose

Chapter 3. Vector Spaces
1. Subspaces of Rn
2. The Four Fundamental Subspaces
3. Linear Independence and Basis
4. Dimension and Its Consequences
5. A Graphic Example
6. Abstract Vector Spaces

Chapter 4. Projections and Linear Transformations
1. Inconsistent Systems and Projection
2. Orthogonal Bases
3. The Matrix of a Linear Transformation and the Change-of-Basis Formula
4. Linear Transformations on Abstract Vector Spaces

Chapter 5. Determinants
1. Properties of Determinants
2. Cofactors and Cramer’s Rule
3. Signed Area in R2 and Signed Volume in R2

Chapter 6. Eigenvalues and Eigenvectors
1. The Characteristic Polynomial
2. Diagonalizability
3. Applications
4. The Spectral Theorem

Chapter 7. Further Topics
1. Complex Eigenvalues and Jordan Canonical Form
2. Computer Graphics and Geometry
3. Matrix Exponentials and Differential Equations

For Further Reading
Answers to Selected Exercises
List of Blue Boxes
Index

 

商品描述(中文翻譯)

內容簡介
《線性代數:幾何方法(第二版)》介紹了線性代數的標準計算方面,並包含多種引人入勝的應用,旨在激勵科學和工程學生,並幫助數學學生過渡到更抽象的高級課程。該書指導學生如何思考數學概念並撰寫嚴謹的數學論證。

幾何學在早期引入,第一部分使用向量代數來介紹解析幾何,第二部分則介紹點積。

強調概念和理解,文本中進行證明並提供大量練習題。為了幫助學生適應數學的嚴謹性,提供了藍色框框,討論邏輯和證明技術的問題或制定解題策略的建議。

在介紹矩陣乘法時,使用旋轉、反射和投影作為接觸線性變換概念的初步方式。然後,線性變換與投影的討論相結合。因此,變換基底公式的動機是從一個幾何定義的線性變換明確理解的坐標系開始,並要求其標準矩陣。

強調正交補空間,並探討其在尋找定義給定 Rn 子空間的齊次線性方程組中的作用。

章節目錄
第1章 向量與矩陣
1. 向量
2. 點積
3. Rn中的超平面
4. 線性方程組與高斯消元法
5. 線性系統的理論
6. 一些應用

第2章 矩陣代數
1. 矩陣運算
2. 線性變換:簡介
3. 逆矩陣
4. 基本矩陣:行的平等時間
5. 轉置

第3章 向量空間
1. Rn的子空間
2. 四個基本子空間
3. 線性獨立性與基底
4. 維度及其後果
5. 一個圖形示例
6. 抽象向量空間

第4章 投影與線性變換
1. 不一致系統與投影
2. 正交基
3. 線性變換的矩陣與變換基底公式
4. 抽象向量空間上的線性變換

第5章 行列式
1. 行列式的性質
2. 余因子與克拉默法則
3. R2中的有符號面積與有符號體積

第6章 特徵值與特徵向量
1. 特徵多項式
2. 對角化
3. 應用
4. 光譜定理

第7章 進一步主題
1. 複特徵值與喬丹標準形
2. 電腦圖形學與幾何
3. 矩陣指數與微分方程

進一步閱讀
選定練習的答案
藍色框框列表
索引