Shock Waves and Reaction--Diffusion Equations
暫譯: 震波與反應-擴散方程式
Smoller, Joel
- 出版商: Springer
- 出版日期: 2012-10-08
- 售價: $9,020
- 貴賓價: 9.5 折 $8,569
- 語言: 英文
- 頁數: 634
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1461269296
- ISBN-13: 9781461269298
-
相關分類:
工程數學 Engineering-mathematics、物理學 Physics
海外代購書籍(需單獨結帳)
相關主題
商品描述
For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled Recent Results. This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con- structing travelling waves for systems of nonlinear equations. The final sec- tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica- ble to many interesting reaction-diffusion systems.
商品描述(中文翻譯)
在本版中,已修正了一些排版錯誤和小失誤。此外,在 Olga Oleinik 的持續鼓勵下,我新增了一章,標題為「最近的結果」(Chapter 25)。這一章分為四個部分,我在這些部分中討論了自第一版撰寫以來出現的一些重要發展。第一部分探討反應-擴散方程,描述了 C. Jones 在 Fitz-Hugh-Nagumo 方程的行進波穩定性方面的工作,以及對稱破壞分岔。第二部分涉及衝擊波理論中的一些最近結果。主要考慮的主題是 L. Tartar 的補償緊湊性概念,以及其在保守定律對中的應用,還有 T.-P. Liu 在衝擊波粘性輪廓穩定性方面的研究。在下一部分中,描述了 Conley 的連接指數和連接矩陣;這些一般概念在構建非線性方程系統的行進波時非常有用。最後一部分,即第四部分,專門討論 C. Jones 和 R. Gardner 的最新結果,他們構建了一個通用理論,使他們能夠定位在行進波穩定性問題中出現的廣泛類別線性算子的點譜。他們的理論足夠通用,可以應用於許多有趣的反應-擴散系統。