Big Data, Mining, and Analytics: Components of Strategic Decision Making (Hardcover)
暫譯: 大數據、挖掘與分析:策略決策的組成要素 (精裝版)
Stephan Kudyba
- 出版商: Auerbach Publication
- 出版日期: 2014-03-12
- 售價: $2,860
- 貴賓價: 9.5 折 $2,717
- 語言: 英文
- 頁數: 325
- 裝訂: Hardcover
- ISBN: 1466568704
- ISBN-13: 9781466568709
-
相關分類:
Data-mining
-
其他版本:
Big Data, Mining, and Analytics: Components of Strategic Decision Making
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
大話設計模式$620$490 -
深入淺出 Servlets 與 JSP (Head First Servlets and JSP, 2/e)$1,200$948 -
精通 Python 3 程式設計, 2/e (Programming in Python 3: A Complete Introduction to the Python Language, 2/e)$680$537 -
深入淺出 Python (Head First Python)$780$616 -
ASP.NET 4.5 專題實務 [I]-C# 入門實戰篇$780$616 -
版本控制使用 Git, 2/e (Version Control with Git: Powerful tools and techniques for collaborative software development, 2/e)$580$458 -
Secure Coding in C and C++, 2/e (Paperback)$2,370$2,252 -
Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 -
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
透視 C語言指標-深度探索記憶體管理核心技術 (Understanding and Using C Pointers)$480$379 -
ASP.NET 學習教材-使用 C#$650$514 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
Responsive Web Design 自動調適型網頁程式設計-讓網頁在電腦 / 平板 / 手機完美展現$360$306 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
Google 活用技巧大解密-絕對能派上用場的 Google 超級攻略$350$280 -
iOS 8 程式設計實戰--205 個快速上手的開發技巧$500$395 -
啊哈!圖解演算法必學基礎$350$298 -
Android 程式設計入門、應用到精通--增訂第三版 (適用 5.X~1.X, Android Wear 穿戴式裝置)$560$442 -
機器學習駭客秘笈 (Machine Learning for Hackers)$680$537 -
成為卓越程式設計師的 38 項必修法則 (Becoming a Better Programmer: A Handbook for People Who Care About Code)$680$537 -
四軸飛行器自造手冊$299$236 -
C++ 並行程式設計實戰手冊 (C++ Concurrency in Action: Practical Multithreading)$680$537 -
Docker 入門與實戰$450$356 -
雲端網頁程式設計 - Google App Engine 使用 Python$290$226 -
機器人雜誌 ROBOCON Magazine 2014/5 月號(No.16)$260$234
相關主題
商品描述
There is an ongoing data explosion transpiring that will make previous creations, collections, and storage of data look trivial. Big Data, Mining, and Analytics: Components of Strategic Decision Making ties together big data, data mining, and analytics to explain how readers can leverage them to extract valuable insights from their data. Facilitating a clear understanding of big data, it supplies authoritative insights from expert contributors into leveraging data resources, including big data, to improve decision making.
Illustrating basic approaches of business intelligence to the more complex methods of data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining.
- Includes a foreword by Thomas H. Davenport, Distinguished Professor, Babson College; Fellow, MIT Center for Digital Business; and Co-Founder, International Institute for Analytics
- Introduces text mining and the transforming of unstructured data into useful information
- Examines real time wireless medical data acquisition for today’s healthcare and data mining challenges
- Presents the contributions of big data experts from academia and industry, including SAS
- Highlights the most exciting emerging technologies for big data—Hadoop is just the beginning
Filled with examples that illustrate the value of analytics throughout, the book outlines a conceptual framework for data modeling that can help you immediately improve your own analytics and decision-making processes. It also provides in-depth coverage of analyzing unstructured data with text mining methods to supply you with the well-rounded understanding required to leverage your information assets into improved strategic decision making.
商品描述(中文翻譯)
目前正在發生一場數據爆炸,這將使以往的數據創建、收集和存儲顯得微不足道。《大數據、數據挖掘與分析:戰略決策的組成部分Making》將大數據、數據挖掘和分析結合在一起,解釋讀者如何利用這些技術從數據中提取有價值的見解。該書促進了對大數據的清晰理解,並提供了來自專家貢獻者的權威見解,幫助讀者利用數據資源(包括大數據)來改善決策。
本書從商業智慧的基本方法到更複雜的數據和文本挖掘方法,指導讀者如何從當前在實體和互聯網環境中生成的各種數據中提取有價值的知識。它考慮了決策過程中各種分析方法的廣泛範疇,包括儀表板、OLAP 立方體、數據挖掘和文本挖掘。
- 包含由巴布森學院的傑出教授 Thomas H. Davenport 撰寫的前言;麻省理工學院數位商業中心的研究員;國際分析學院的共同創辦人
- 介紹文本挖掘及將非結構化數據轉化為有用信息的過程
- 檢視當今醫療保健和數據挖掘挑戰的實時無線醫療數據獲取
- 提出來自學術界和業界(包括 SAS)的大數據專家的貢獻
- 突出大數據中最令人興奮的新興技術——Hadoop 只是個開始
本書充滿了展示分析價值的例子,概述了一個數據建模的概念框架,幫助您立即改善自己的分析和決策過程。它還深入探討了使用文本挖掘方法分析非結構化數據,為您提供所需的全面理解,以便將您的信息資產轉化為改善的戰略決策。
