Think Stats, 2/e (Paperback)
暫譯: 思考統計學,第二版 (平裝本)
Allen B. Downey
- 出版商: O'Reilly
- 出版日期: 2014-11-25
- 定價: $1,300
- 售價: 5.0 折 $650
- 語言: 英文
- 頁數: 226
- 裝訂: Paperback
- ISBN: 1491907339
- ISBN-13: 9781491907337
-
相關分類:
機率統計學 Probability-and-statistics、Python
-
相關翻譯:
統計思維:程序員數學之概率統計(第2版) (圖靈程序設計叢書) (簡中版)
-
其他版本:
Think STATS: Exploratory Data Analysis 3/e
買這商品的人也買了...
-
認識 Fuzzy, 3/e$350$315 -
大話設計模式$620$490 -
程式設計師的自我修養-連結、載入、程式庫$580$493 -
Windows System Programming, 4/e (Hardcover)$2,700$2,646 -
ASP.NET 4.0 專題實務 I─實戰入門篇使用 VB$750$593 -
$1,701Advanced Qt Programming: Creating Great Software with C++ and Qt 4 (Hardcover) -
精通 Python 3 程式設計, 2/e (Programming in Python 3: A Complete Introduction to the Python Language, 2/e)$680$537 -
$588Cloud Computing (Paperback) -
JavaScript & jQuery: The Missing Manual 國際中文版, 2/e
$580$458 -
數位學習導論與實務$650$507 -
版本控制使用 Git, 2/e (Version Control with Git: Powerful tools and techniques for collaborative software development, 2/e)$580$458 -
Data Science for Business: What you need to know about data mining and data-analytic thinking (Paperback)$1,980$1,881 -
Think Bayes : Bayesian Statistics in Python (Paperback)$1,180$1,121 -
深入淺出 C#, 3/e (Head First C#, 3/e)$980$774 -
從車庫的舊 PC 到百萬台伺服器-巨型網站成長從無到無限大,技術架構大揭祕-最棒的「秒殺」網站設計實例$480$408 -
Responsive Web Design 自動調適型網頁程式設計-讓網頁在電腦 / 平板 / 手機完美展現$360$306 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
ASP.NET MVC 5 網站開發美學$780$616 -
邁向 jQuery 達人的階梯$490$417 -
掌握行銷新趨勢 ─ 你不可不知的網站流量分析 Google Analytics$500$450 -
Swift初學特訓班--iOS App 開發快速養成與實戰(附近3小時新手入門與關鍵影音教學/全書範例程式)$420$332 -
成為卓越程式設計師的 38 項必修法則 (Becoming a Better Programmer: A Handbook for People Who Care About Code)$680$537 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
Think Python|學習程式設計的思考概念, 2/e (Think Python: How to Think Like a Computer Scientist, 2/e)$520$411
相關主題
商品描述
If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.
By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts.
New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries.
- Develop an understanding of probability and statistics by writing and testing code
- Run experiments to test statistical behavior, such as generating samples from several distributions
- Use simulations to understand concepts that are hard to grasp mathematically
- Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools
- Use statistical inference to answer questions about real-world data
商品描述(中文翻譯)
如果您知道如何編程,您就具備將數據轉化為知識的技能,並能使用概率和統計的工具。本書提供了簡明的介紹,展示如何使用 Python 編寫的程序進行計算機統計分析,而非數學分析。
通過在這本徹底修訂的書中使用單一案例研究,您將學習探索性數據分析的整個過程——從收集數據和生成統計到識別模式和測試假設。您將探索分佈、概率規則、可視化以及許多其他工具和概念。
新章節涵蓋回歸分析、時間序列分析、生存分析和分析方法,將豐富您的發現。
- 通過編寫和測試代碼來理解概率和統計
- 進行實驗以測試統計行為,例如從幾個分佈中生成樣本
- 使用模擬來理解數學上難以掌握的概念
- 使用 Python 從大多數來源導入數據,而不是依賴已清理和格式化的數據以供統計工具使用
- 使用統計推斷來回答有關現實世界數據的問題
