Deep Belief Nets in C++ and CUDA C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks (Paperback)
暫譯: C++ 與 CUDA C 深度信念網絡:第一卷:限制玻爾茲曼機與監督式前饋網絡 (平裝本)
Timothy Masters
- 出版商: CreateSpace Independ
- 出版日期: 2015-02-11
- 售價: $1,910
- 貴賓價: 9.5 折 $1,815
- 語言: 英文
- 頁數: 244
- 裝訂: Paperback
- ISBN: 1507751478
- ISBN-13: 9781507751473
-
相關分類:
C++ 程式語言、CUDA
無法訂購
買這商品的人也買了...
-
21 世紀的 C 語言:史上最簡潔程式語言 Go Web 開發到底$520$442 -
作業系統概念, 9/e (授權經銷版) (Operating System Concepts, 9/e)$850$808 -
Docker 入門與實戰$450$356 -
Parallel Computing for Data Science: With Examples in R, C++ and CUDA (Hardcover)$2,275$2,161 -
用 Kali Linux 破解每一台連網裝置$580$493 -
Microsoft Azure 教戰手札 – 系統建置與管理篇, 3/e$550$435 -
Deep Belief Nets in C++ and CUDA C: Volume II: Autoencoding in the Complex Domain (Paperback)$1,850$1,758 -
Debugging Teams: Better Productivity through Collaboration (Paperback)$969$918 -
設計模式與遊戲開發的完美結合$690$538 -
Deep Belief Nets in C++ and CUDA C: Volume III: Convolutional Nets (Volume 3) (Paperback)$1,950$1,853 -
2D Game Collision Detection: An introduction to clashing geometry in games$950$903 -
$270進化從孤膽極客到高效團隊 (Debugging Teams Better Productivity through Collaboration) -
The Rails 5 Way (4th Edition) (Addison-Wesley Professional Ruby Series)$1,750$1,663 -
產品領導力|頂尖產品經理打造出色產品與成功團隊的致勝關鍵 (Product Leadership: How Top Product Managers Launch Awesome Products and Build Successful Teams)$400$316 -
$474游戲服務器架構與優化 -
$354游戲開發者訪談錄 -
$454Redis 4.x Cookbook (中文版) -
Java 資料科學|科學與工程實務方法 (Data Science with Java: Practical Methods for Scientists and Engineers)$480$379 -
$199番茄工作法圖解:簡單易行的時間管理方法 -
重構 JavaScript (Refactoring JavaScript: Turning Bad Code Into Good Code)$680$537 -
從零開始!邁向數據分析 SQL 資料庫語法入門$520$411 -
原來你才是絆腳石:企業敏捷轉型失敗都是因為領導者,你做對了嗎?$450$383 -
Python 神乎其技:精要剖析語法精髓,大幅提升程式功力!$520$442 -
Unity 行動遊戲開發實務 (Mobile Game Development with Unity: Build Once, Deploy Anywhere)$580$458 -
最簡單的整合框架:Vue.js 立即成為前端高手$590$502
相關主題
商品描述
Deep belief nets are one of the most exciting recent developments in artificial intelligence. The structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a ‘thought process’ that is capable of learning abstract concepts built from simpler primitives. A typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. This book presents the essential building blocks of the most common forms of deep belief nets. At each step the text provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the DEEP program which implements these algorithms, are available for free download from the author’s website.
商品描述(中文翻譯)
深度信念網絡是人工智慧領域中最近最令人興奮的發展之一。這些優雅模型的結構與傳統神經網絡相比,更接近人類大腦的結構;它們擁有一種能夠從更簡單的基本元素中學習抽象概念的「思考過程」。一個典型的深度信念網絡可以通過優化數百萬個參數來學習識別複雜的模式,然而這種模型仍然能夠抵抗過擬合。這本書介紹了最常見的深度信念網絡形式的基本構建塊。在每一步中,文本提供了直觀的動機、與主題相關的最重要方程式的摘要,並以高度註解的代碼結束,這些代碼適用於現代 CPU 的線程計算以及在具備 CUDA 功能的顯示卡的計算機上進行大規模並行處理。書中所呈現的所有例程的源代碼,以及實現這些算法的 DEEP 程式,均可從作者的網站免費下載。
