Practical Data Analysis Cookbook

Tomasz Drabas

  • 出版商: Packt Publishing
  • 出版日期: 2016-04-29
  • 售價: $2,150
  • 貴賓價: 9.5$2,043
  • 語言: 英文
  • 頁數: 384
  • 裝訂: Paperback
  • ISBN: 1783551666
  • ISBN-13: 9781783551668
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

商品描述

Over 60 practical recipes on data exploration and analysis

About This Book

  • Clean dirty data, extract accurate information, and explore the relationships between variables
  • Forecast the output of an electric plant and the water flow of American rivers using pandas, NumPy, Statsmodels, and scikit-learn
  • Find and extract the most important features from your dataset using the most efficient Python libraries

Who This Book Is For

If you are a beginner or intermediate-level professional who is looking to solve your day-to-day, analytical problems with Python, this book is for you. Even with no prior programming and data analytics experience, you will be able to finish each recipe and learn while doing so.

What You Will Learn

  • Read, clean, transform, and store your data usng Pandas and OpenRefine
  • Understand your data and explore the relationships between variables using Pandas and D3.js
  • Explore a variety of techniques to classify and cluster outbound marketing campaign calls data of a bank using Pandas, mlpy, NumPy, and Statsmodels
  • Reduce the dimensionality of your dataset and extract the most important features with pandas, NumPy, and mlpy
  • Predict the output of a power plant with regression models and forecast water flow of American rivers with time series methods using pandas, NumPy, Statsmodels, and scikit-learn
  • Explore social interactions and identify fraudulent activities with graph theory concepts using NetworkX and Gephi
  • Scrape Internet web pages using urlib and BeautifulSoup and get to know natural language processing techniques to classify movies ratings using NLTK
  • Study simulation techniques in an example of a gas station with agent-based modeling

In Detail

Data analysis is the process of systematically applying statistical and logical techniques to describe and illustrate, condense and recap, and evaluate data. Its importance has been most visible in the sector of information and communication technologies. It is an employee asset in almost all economy sectors.

This book provides a rich set of independent recipes that dive into the world of data analytics and modeling using a variety of approaches, tools, and algorithms. You will learn the basics of data handling and modeling, and will build your skills gradually toward more advanced topics such as simulations, raw text processing, social interactions analysis, and more.

First, you will learn some easy-to-follow practical techniques on how to read, write, clean, reformat, explore, and understand your data―arguably the most time-consuming (and the most important) tasks for any data scientist.

In the second section, different independent recipes delve into intermediate topics such as classification, clustering, predicting, and more. With the help of these easy-to-follow recipes, you will also learn techniques that can easily be expanded to solve other real-life problems such as building recommendation engines or predictive models.

In the third section, you will explore more advanced topics: from the field of graph theory through natural language processing, discrete choice modeling to simulations. You will also get to expand your knowledge on identifying fraud origin with the help of a graph, scrape Internet websites, and classify movies based on their reviews.

By the end of this book, you will be able to efficiently use the vast array of tools that the Python environment has to offer.

Style and approach

This hands-on recipe guide is divided into three sections that tackle and overcome real-world data modeling problems faced by data analysts/scientist in their everyday work. Each independent recipe is written in an easy-to-follow and step-by-step fashion.

商品描述(中文翻譯)

超過60個實用的資料探索和分析食譜

關於本書

- 清理髒數據,提取準確信息,並探索變量之間的關係
- 使用pandas、NumPy、Statsmodels和scikit-learn預測電廠的輸出和美國河流的水流
- 使用最高效的Python庫從數據集中找到並提取最重要的特徵

本書適合對Python有興趣且具有初級或中級專業水平的讀者。即使沒有編程和數據分析經驗,您也能夠完成每個食譜並在實踐中學習。

您將學到什麼

- 使用Pandas和OpenRefine讀取、清理、轉換和存儲數據
- 使用Pandas和D3.js了解數據並探索變量之間的關係
- 使用Pandas、mlpy、NumPy和Statsmodels探索各種技術,對銀行的外呼市場活動通話數據進行分類和聚類
- 使用Pandas、NumPy和mlpy減少數據集的維度並提取最重要的特徵
- 使用Pandas、NumPy、Statsmodels和scikit-learn預測電廠的輸出,並使用時間序列方法預測美國河流的水流
- 使用NetworkX和Gephi探索社交互動並識別欺詐活動
- 使用urlib和BeautifulSoup爬取網頁,並使用NLTK了解自然語言處理技術,對電影評分進行分類
- 通過代理模型研究模擬技術的例子,了解加油站的運作

詳細內容

數據分析是系統地應用統計和邏輯技術來描述、總結和評估數據的過程。它在信息和通信技術領域最為重要。在幾乎所有經濟部門中,它都是一項重要資產。

本書提供了一系列獨立的食譜,深入探索使用各種方法、工具和算法進行數據分析和建模的世界。您將學習數據處理和建模的基礎知識,並逐步提升技能,涉及更高級的主題,如模擬、原始文本處理、社交互動分析等。

首先,您將學習一些易於遵循的實用技巧,如讀取、寫入、清理、重新格式化、探索和理解數據,這些是任何數據科學家最耗時(也是最重要)的任務。

在第二部分中,不同的獨立食譜涉及中級主題,如分類、聚類、預測等。通過這些易於遵循的食譜,您還將學習可以輕鬆擴展以解決其他實際問題的技術,例如構建推薦引擎或預測模型。

在第三部分中,您將探索更高級的主題:從圖論領域到自然語言處理、離散選擇建模到模擬。您還將擴展對使用圖識別欺詐來源的知識,爬取互聯網網站,並根據評論對電影進行分類。

通過閱讀本書,您將能夠高效地使用Python環境提供的各種工具。

風格和方法

這本實用的食譜指南分為三個部分,解決了數據分析師/科學家在日常工作中遇到的現實數據建模問題。每個獨立的食譜都以易於遵循和逐步的方式撰寫。