Hands-On Automated Machine Learning: A beginner's guide to building automated machine learning systems using AutoML and Python
Sibanjan Das, Umit Mert Cakmak
- 出版商: Packt Publishing
- 出版日期: 2018-04-25
- 售價: $1,380
- 貴賓價: 9.5 折 $1,311
- 語言: 英文
- 頁數: 282
- 裝訂: Paperback
- ISBN: 1788629892
- ISBN-13: 9781788629898
-
相關分類:
Python、Machine Learning 機器學習
-
相關翻譯:
自動機器學習入門與實踐:使用 Python (Hands-On Automated Machine Learning: A beginner's guide to building automated machine learning systems using AutoML and Python) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$350$315 -
$1,000$900 -
$768$730 -
$560$504 -
$560$437 -
$420$378 -
$1,690$1,606 -
$680$578 -
$1,460$1,387 -
$199AlphaGo 如何戰勝人類圍棋大師 — 智能硬件 TensorFlow 實踐
-
$450$356 -
$1,188Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks
-
$505從零開始學架構:照著做,你也能成為架構師
-
$650$553 -
$420$332 -
$300$270 -
$520$411 -
$301特徵工程入門與實踐 (Feature Engineering Made Easy)
-
$680$612 -
$880$695 -
$380$342 -
$580$458 -
$680$530 -
$690$538 -
$474$450
商品描述
Automate data and model pipelines for faster machine learning applications
Key Features
- Build automated modules for different machine learning components
- Understand each component of a machine learning pipeline in depth
- Learn to use different open source AutoML and feature engineering platforms
Book Description
AutoML is designed to automate parts of Machine Learning. Readily available AutoML tools are making data science practitioners' work easy and are received well in the advanced analytics community. Automated Machine Learning covers the necessary foundation needed to create automated machine learning modules and helps you get up to speed with them in the most practical way possible.
In this book, you'll learn how to automate different tasks in the machine learning pipeline such as data preprocessing, feature selection, model training, model optimization, and much more. In addition to this, it demonstrates how you can use the available automation libraries, such as auto-sklearn and MLBox, and create and extend your own custom AutoML components for Machine Learning.
By the end of this book, you will have a clearer understanding of the different aspects of automated Machine Learning, and you'll be able to incorporate automation tasks using practical datasets. You can leverage your learning from this book to implement Machine Learning in your projects and get a step closer to winning various machine learning competitions.
What you will learn
- Understand the fundamentals of Automated Machine Learning systems
- Explore auto-sklearn and MLBox for AutoML tasks
- Automate your preprocessing methods along with feature transformation
- Enhance feature selection and generation using the Python stack
- Assemble individual components of ML into a complete AutoML framework
- Demystify hyperparameter tuning to optimize your ML models
- Dive into Machine Learning concepts such as neural networks and autoencoders
- Understand the information costs and trade-offs associated with AutoML
Who This Book Is For
If you're a budding data scientist, data analyst, or Machine Learning enthusiast and are new to the concept of automated machine learning, this book is ideal for you. You'll also find this book useful if you're an ML engineer or data professional interested in developing quick machine learning pipelines for your projects. Prior exposure to Python programming will help you get the best out of this book.
Table of Contents
- Introduction to AutoML
- Introduction to Machine Learning Using Python
- Data Preprocessing
- Automated Algorithm Selection
- Hyperparameter Optimization
- Creating AutoML pipelines
- Dive into Deep Learning
- Critical Aspects of ML and Data Science Projects