GPU Programming with C++ and CUDA: Uncover effective techniques for writing efficient GPU-parallel C++ applications (Paperback)
暫譯: 使用 C++ 和 CUDA 的 GPU 程式設計:揭示撰寫高效 GPU 並行 C++ 應用程式的有效技術 (平裝本)
Motta, Paulo
- 出版商: Packt Publishing
- 出版日期: 2025-08-29
- 售價: $1,650
- 貴賓價: 9.5 折 $1,568
- 語言: 英文
- 頁數: 270
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1805124544
- ISBN-13: 9781805124542
-
相關分類:
CUDA
立即出貨 (庫存=1)
買這商品的人也買了...
-
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback) -
Raspberry Pi 3 Model B+ (UK製)$4,620$4,389 -
Raspberry Pi 4 Model B/4GB 樹莓派套件組--全配(含Pi 4/4GB + 32G SD卡 + 原廠電源 + 原廠外殼 + 原廠HDMI線+ 散熱片)$3,780$3,591 -
Raspberry Pi 4 Model B / 8GB (UK製) | 樹莓派 4代開發版(8GB)$3,300$3,135 -
Raspberry Pi PoE+ HAT (Power over Ethernet) 擴充板 | 網路供電擴展板$1,050$998 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,720$1,634
相關主題
商品描述
Learn to solve parallel problems with GPU-accelerated C++ code and create reusable libraries that can be accessed from other programming languages
Key Features:
- Harness the power of GPU parallelism to accelerate real-world tasks
- Utilize CUDA streams and scale performance with custom C++ solutions
- Create reusable GPU libraries and expose them to Python seamlessly
Book Description:
Written by Paulo Motta, a senior researcher with decades of experience, this comprehensive GPU programming book is an essential guide for leveraging the power of parallelism to accelerate your computations. The first section introduces the concept of parallelism and provides practical advice on how to think about and utilize it effectively. Starting with a basic GPU program, you then gain hands-on experience in managing the device. This foundational knowledge is then expanded by parallelizing the program to illustrate how GPUs enhance performance.
The second section explores GPU architecture and implementation strategies for parallel algorithms, and offers practical insights into optimizing resource usage for efficient execution.
In the final section, you will explore advanced topics such as utilizing CUDA streams. You will also learn how to package and distribute GPU-accelerated libraries for the Python ecosystem, extending the reach and impact of your work.
Combining expert insight with real-world problem solving, this book is a valuable resource for developers and researchers aiming to harness the full potential of GPU computing. The blend of theoretical foundations, practical programming techniques, and advanced optimization strategies it offers is sure to help you succeed in the fast-evolving field of GPU programming.
What You Will Learn:
- Manage GPU devices and accelerate your applications
- Apply parallelism effectively using CUDA and C++
- Choose between existing libraries and custom GPU solutions
- Package GPU code into libraries for use with Python
- Explore advanced topics such as CUDA streams
- Implement optimization strategies for resource-efficient execution
Who this book is for:
C++ developers and programmers interested in accelerating applications using GPU programming will benefit from this book. It is suitable for those with solid C++ experience who want to explore high-performance computing techniques. Familiarity with operating system fundamentals will help when dealing with device memory and communication in advanced chapters.
Table of Contents
- Introduction to Parallel Programming
- Getting Started
- Hello CUDA
- Hello again, but in parallel
- A closer look into the GPU world
- Data Management and Persistence
- Performance strategies
- Using multiple GPUs
- Exposing your code as a Python Library
- Exploring the existing GPU models
商品描述(中文翻譯)
學習使用 GPU 加速的 C++ 代碼解決平行問題,並創建可供其他程式語言訪問的可重用庫
主要特點:
- 利用 GPU 平行處理的力量加速現實世界的任務
- 使用 CUDA 流並通過自定義 C++ 解決方案擴展性能
- 創建可重用的 GPU 庫,並無縫地將其暴露給 Python
書籍描述:
本書由擁有數十年經驗的高級研究員 Paulo Motta 撰寫,是一本全面的 GPU 程式設計指南,對於利用平行處理的力量來加速計算至關重要。第一部分介紹了平行處理的概念,並提供了如何有效思考和利用平行處理的實用建議。從一個基本的 GPU 程式開始,您將獲得管理設備的實踐經驗。這些基礎知識隨後通過平行化程式來擴展,以說明 GPU 如何提升性能。
第二部分探討了 GPU 架構和平行演算法的實現策略,並提供了優化資源使用以實現高效執行的實用見解。
在最後一部分,您將探索高級主題,例如使用 CUDA 流。您還將學習如何打包和分發針對 Python 生態系統的 GPU 加速庫,擴展您工作的影響力。
本書結合專家的見解與現實問題的解決方案,是開發人員和研究人員利用 GPU 計算全部潛力的寶貴資源。它提供的理論基礎、實用程式設計技術和高級優化策略的結合,必將幫助您在快速發展的 GPU 程式設計領域中取得成功。
您將學到的內容:
- 管理 GPU 設備並加速您的應用程式
- 使用 CUDA 和 C++ 有效應用平行處理
- 在現有庫和自定義 GPU 解決方案之間進行選擇
- 將 GPU 代碼打包成庫以供 Python 使用
- 探索高級主題,例如 CUDA 流
- 實施資源高效執行的優化策略
本書適合誰:
對於希望使用 GPU 程式設計加速應用程式的 C++ 開發人員和程式設計師,本書將帶來益處。它適合那些擁有扎實 C++ 經驗的人,想要探索高性能計算技術。熟悉操作系統基礎知識將有助於在高級章節中處理設備記憶體和通信。
目錄
- 平行程式設計介紹
- 開始使用
- Hello CUDA
- 再次問候,但以平行方式
- 更深入了解 GPU 世界
- 數據管理與持久性
- 性能策略
- 使用多個 GPU
- 將您的代碼暴露為 Python 庫
- 探索現有的 GPU 模型