AI Agents in Practice: Design, implement, and scale autonomous AI systems for production
暫譯: 實務中的 AI 代理:設計、實作及擴展生產用的自主 AI 系統

Alto, Valentina

  • 出版商: Packt Publishing
  • 出版日期: 2025-08-28
  • 售價: $1,630
  • 貴賓價: 9.5$1,549
  • 語言: 英文
  • 頁數: 282
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 180580135X
  • ISBN-13: 9781805801351
  • 相關分類: AI Coding
  • 立即出貨 (庫存=1)

商品描述

Master the art of building AI agents with this hands-on guide to orchestration, multi-agent systems, real-world case studies, and ethical insights to drive immediate business impact

Key Features

  • Build production-ready AI agents with hands-on tutorials for diverse industry applications
  • Explore multi-agent system architectures with practical frameworks for orchestrator comparison
  • Future-proof your AI development with ethical implementation strategies and security patterns
  • Purchase of the print or Kindle book includes a free PDF eBook

Book Description

As AI agents evolve to take on complex tasks and operate autonomously, you need to learn how to build these next-generation systems. Author Valentina Alto brings practical, industry-grounded expertise in AI Agents in Practice to help you go beyond simple chatbots and create AI agents that plan, reason, collaborate, and solve real-world problems using large language models (LLMs) and the latest open-source frameworks.

In this book, you'll get a comparative tour of leading AI agent frameworks such as LangChain and LangGraph, covering each tool's strengths, ideal use cases, and how to apply them in real-world projects. Through step-by-step examples, you’ll learn how to construct single-agent and multi-agent architectures using proven design patterns to orchestrate AI agents working together. Case studies across industries will show you how AI agents drive value in real-world scenarios, while guidance on responsible AI will help you implement ethical guardrails from day one. The chapters also set the stage with a brief history of AI agents, from early rule-based systems to today's LLM-driven autonomous agents, so you understand how we got here and where the field is headed.

By the end of this book, you'll have the practical skills, design insights, and ethical foresight to build and deploy AI agents that truly make an impact.

What you will learn

  • Build core agent components such as LLMs, memory systems, tool integration, and context management
  • Develop production-ready AI agents using frameworks such as LangChain with code
  • Create effective multi-agent systems using orchestration patterns for problem-solving
  • Implement industry-specific agents for e-commerce, customer support, and more
  • Design robust memory architectures for agents with short- and long-term recall
  • Apply responsible AI practices with monitoring, guardrails, and human oversight
  • Optimize AI agent performance and cost for production environments

Who this book is for

This book is ideal for AI engineers and data scientists looking to move beyond basic LLM implementations to build sophisticated autonomous agents. Software developers and system architects will find practical guidelines for integrating agents into existing tech stacks. Product managers and technical entrepreneurs will gain strategic insights into how AI agents can solve business problems across industries. A basic understanding of machine learning concepts and working knowledge of Python are required to make the most of this book and implement production-ready AI agent systems.

商品描述(中文翻譯)

掌握建立 AI 代理的藝術,透過這本實用指南學習編排、多代理系統、真實案例研究及倫理見解,以推動即時的商業影響。

主要特色

- 透過實作教程建立適合生產環境的 AI 代理,應用於多元產業
- 探索多代理系統架構,提供實用框架以比較編排者
- 以倫理實施策略和安全模式未來證明您的 AI 開發
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書

書籍描述

隨著 AI 代理不斷演進以承擔複雜任務並自主運作,您需要學習如何建立這些下一代系統。作者 Valentina Alto 在《AI Agents in Practice》中帶來實用的行業專業知識,幫助您超越簡單的聊天機器人,創建能夠計劃、推理、協作並解決真實世界問題的 AI 代理,使用大型語言模型(LLMs)和最新的開源框架。

在這本書中,您將獲得對領先 AI 代理框架的比較巡禮,例如 LangChain 和 LangGraph,涵蓋每個工具的優勢、理想用例以及如何在真實項目中應用它們。透過逐步示例,您將學會如何使用經過驗證的設計模式構建單代理和多代理架構,以協調 AI 代理的協作。各行業的案例研究將展示 AI 代理如何在真實場景中創造價值,而有關負責任 AI 的指導將幫助您從第一天起實施倫理防護措施。本章節還將簡要回顧 AI 代理的歷史,從早期的基於規則的系統到今天的 LLM 驅動的自主代理,讓您了解我們如何走到這一步以及該領域的未來方向。

在本書結束時,您將擁有實用技能、設計見解和倫理前瞻性,能夠構建和部署真正能夠產生影響的 AI 代理。

您將學到的內容

- 建立核心代理組件,如 LLM、記憶系統、工具整合和上下文管理
- 使用 LangChain 等框架開發適合生產環境的 AI 代理,並附上程式碼
- 使用編排模式創建有效的多代理系統以解決問題
- 實施行業特定的代理,應用於電子商務、客戶支持等
- 為代理設計穩健的記憶架構,以實現短期和長期回憶
- 應用負責任的 AI 實踐,包括監控、防護措施和人類監督
- 優化 AI 代理在生產環境中的性能和成本

本書適合對象

本書非常適合希望超越基本 LLM 實現,建立複雜自主代理的 AI 工程師和數據科學家。軟體開發人員和系統架構師將找到將代理整合到現有技術堆疊的實用指導。產品經理和技術創業者將獲得有關 AI 代理如何解決各行業商業問題的戰略見解。為了充分利用本書並實施適合生產環境的 AI 代理系統,需具備基本的機器學習概念和 Python 的工作知識。

目錄大綱

  1. Evolution of GenAI Workflows
  2. The Rise of AI Agents
  3. The Need for an AI Orchestrator
  4. The Need for Memory and Context Management
  5. The Need for Tools and External Integrations
  6. Building Your First AI Agent with LangChain
  7. Multi-Agent Applications
  8. Orchestrating Intelligence: Blueprint for Next-Gen Agent Protocols
  9. Navigating Ethical Challenges in Real-World AI

目錄大綱(中文翻譯)


  1. Evolution of GenAI Workflows

  2. The Rise of AI Agents

  3. The Need for an AI Orchestrator

  4. The Need for Memory and Context Management

  5. The Need for Tools and External Integrations

  6. Building Your First AI Agent with LangChain

  7. Multi-Agent Applications

  8. Orchestrating Intelligence: Blueprint for Next-Gen Agent Protocols

  9. Navigating Ethical Challenges in Real-World AI

最後瀏覽商品 (20)