Model Selection and Error Estimation in a Nutshell
暫譯: 模型選擇與誤差估計概述

Oneto, Luca

  • 出版商: Springer
  • 出版日期: 2019-07-25
  • 售價: $3,790
  • 貴賓價: 9.5$3,601
  • 語言: 英文
  • 頁數: 132
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030243583
  • ISBN-13: 9783030243586
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research.

商品描述(中文翻譯)

如何選擇最佳表現的數據驅動模型?我們如何嚴格估計其泛化誤差?統計學習理論通過推導模型的非漸近界限來回答這些問題,換句話說,就是基於可用數據上計算的量來上界學習模型的真實誤差。然而,長期以來,統計學習理論僅被視為一個抽象的理論框架,對於啟發新的學習方法有用,但對實際問題的適用性有限。本書的目的是提供一個易於理解的模型選擇和誤差估計問題的概述,專注於不同統計學習理論方法背後的思想,並簡化大多數技術方面,以使其在實踐中更易於接觸和使用。本書首先介紹了80年代的開創性工作,並包括最新的研究結果。它討論了未解決的問題並概述了未來的研究方向。

作者簡介

Luca Oneto was born in Rapallo, Italy in 1986. He received his BSc and MSc in Electronic Engineering at the University of Genoa, Italy respectively in 2008 and 2010. In 2014 he received his PhD from the same university in the School of Sciences and Technologies for Knowledge and Information Retrieval with the thesis ``Learning Based On Empirical Data''. In 2017 he obtained the Italian National Scientific Qualification for the role of Associate Professor in Computer Engineering and in 2018 he obtained the one in Computer Science. He worked as Assistant Professor in Computer Engineering at University of Genoa from 2016 to 2019. In 2018 he was co-founder of the spin-off ZenaByte s.r.l. He is currently Associate Professor in Computer Science at University of Pisa with particular interests in Statistical Learning Theory and Data Science. Besides being an editorial board member of the book series Modeling and Optimization in Science and Technologies he is also co-author of the textbook Introduction to Digital Systems Design (Donzellini et al., Springer, 2019).

作者簡介(中文翻譯)

盧卡·奧內托(Luca Oneto)於1986年出生於意大利拉帕洛。他於2008年和2010年分別在意大利熱那亞大學獲得電子工程的學士學位和碩士學位。2014年,他在同一所大學的科學與技術學院獲得博士學位,論文題目為《基於實證數據的學習》(Learning Based On Empirical Data)。2017年,他獲得意大利國家科學資格,成為計算機工程的副教授,並於2018年獲得計算機科學的資格。他於2016年至2019年在熱那亞大學擔任計算機工程的助理教授。2018年,他共同創立了衍生公司ZenaByte s.r.l.。目前,他是比薩大學的計算機科學副教授,特別關注統計學習理論和數據科學。除了擔任書系列《科學與技術中的建模與優化》(Modeling and Optimization in Science and Technologies)的編輯委員會成員外,他還是教科書《數位系統設計導論》(Introduction to Digital Systems Design,Donzellini等,Springer,2019)的共同作者。