Tensor-Based Dynamical Systems: Theory and Applications
暫譯: 基於張量的動態系統:理論與應用
Chen, Can
- 出版商: Springer
- 出版日期: 2025-04-02
- 售價: $2,340
- 貴賓價: 9.5 折 $2,223
- 語言: 英文
- 頁數: 106
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031545079
- ISBN-13: 9783031545078
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book provides a comprehensive review on tensor algebra, including tensor products, tensor unfolding, tensor eigenvalues, and tensor decompositions. Tensors are multidimensional arrays generalized from vectors and matrices, which can capture higher-order interactions within multiway data. In addition, tensors have wide applications in many domains such as signal processing, machine learning, and data analysis, and the author explores the role of tensors/tensor algebra in tensor-based dynamical systems where system evolutions are captured through various tensor products. The author provides an overview of existing literature on the topic and aims to inspire readers to learn, develop, and apply the framework of tensor-based dynamical systems.
商品描述(中文翻譯)
本書提供了對張量代數的全面回顧,包括張量乘積、張量展開、張量特徵值和張量分解。張量是從向量和矩陣推廣而來的多維數組,能夠捕捉多維數據中的高階交互。此外,張量在許多領域中有廣泛的應用,如信號處理、機器學習和數據分析,作者探討了張量/張量代數在基於張量的動態系統中的角色,這些系統的演變是通過各種張量乘積來捕捉的。作者提供了該主題現有文獻的概述,並旨在激勵讀者學習、開發和應用基於張量的動態系統框架。
作者簡介
Can Chen, Ph.D. is an Assistant Professor in the School of Data Science and Society with a second appointment in the Department of Mathematics at the University of North Carolina at Chapel Hill. He received the B.S. degree in Mathematics from the University of California, Irvine in 2016, and the M.S. degree in Electrical and Computer Engineering and the Ph.D. degree in Applied and Interdisciplinary Mathematics from the University of Michigan in 2020 and 2021, respectively. He was a Postdoctoral Research Fellow in the Channing Division of Network Medicine at Brigham and Women's Hospital and Harvard Medical School from 2021 to 2023. His research interests span a diverse range of fields, including control theory, network science, tensor algebra, numerical analysis, data science, machine learning, deep learning, hypergraph learning, data analysis, and computational biology.
作者簡介(中文翻譯)
陳博士(Can Chen, Ph.D.)是北卡羅來納大學教堂山分校數據科學與社會學院的助理教授,同時在數學系擔任第二職位。他於2016年獲得加州大學爾灣分校的數學學士學位,並於2020年和2021年分別獲得密西根大學的電機與計算機工程碩士學位及應用與跨學科數學博士學位。他曾於2021年至2023年在布萊根婦女醫院及哈佛醫學院的查寧網絡醫學部擔任博士後研究員。他的研究興趣涵蓋多個領域,包括控制理論、網絡科學、張量代數、數值分析、數據科學、機器學習、深度學習、超圖學習、數據分析及計算生物學。