Deep Generative Modeling, 2/e (Hardcover)
            
暫譯: 深度生成模型,第2版(精裝本)
        
        Tomczak, Jakub M.
- 出版商: Springer
- 出版日期: 2024-09-11
- 售價: $2,700
- 貴賓價: 9.5 折 $2,565
- 語言: 英文
- 頁數: 300
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031640861
- ISBN-13: 9783031640865
- 
    相關分類:
    
      GAN 生成對抗網絡
 
立即出貨 (庫存=1)
買這商品的人也買了...
- 
                
                   Neural Networks and Intellect: Using Model-Based Concepts (Hardcover) Neural Networks and Intellect: Using Model-Based Concepts (Hardcover)$980$960
- 
                
                   $1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) $1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback)
- 
                
                   離散數學 最新修訂版 離散數學 最新修訂版$800$632
- 
                
                   Python 設計模式深入解析 (Mastering Python Design Patterns) Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281
- 
                
                   Computer Age Statistical Inference : Algorithms, Evidence, and Data Science (Hardocver) Computer Age Statistical Inference : Algorithms, Evidence, and Data Science (Hardocver)$2,980$2,831
- 
                
                   演算法之美:隱藏在資料結構背後的原理 (C++版) 演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507
- 
                
                   PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow) PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425
- 
                
                   A First Course in Random Matrix Theory: For Physicists, Engineers and Data Scientists (Hardcover) A First Course in Random Matrix Theory: For Physicists, Engineers and Data Scientists (Hardcover)$1,700$1,666
- 
                
                   Introduction to Complex Variables and Applications (Paperback) Introduction to Complex Variables and Applications (Paperback)$1,480$1,450
- 
                
                   $2,565The Algorithm Design Manual, 3/e (德國原版) $2,565The Algorithm Design Manual, 3/e (德國原版)
- 
                
                   打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進 打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948
- 
                
                   Probabilistic Machine Learning: An Introduction (Hardcover) Probabilistic Machine Learning: An Introduction (Hardcover)$2,650$2,597
- 
                
                   強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code) 強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537
- 
                
                   Clean Architecture 無瑕的程式碼-整潔的軟體設計與架構篇 + 實作篇-在整潔的架構上弄髒你的手 (雙書合購) Clean Architecture 無瑕的程式碼-整潔的軟體設計與架構篇 + 實作篇-在整潔的架構上弄髒你的手 (雙書合購)$1,080$820
- 
                
                   Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback) Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739
- 
                
                   邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e) 邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608
- 
                
                   Hands-On Graph Neural Networks Using Python: Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch (Paperback) Hands-On Graph Neural Networks Using Python: Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch (Paperback)$1,800$1,710
- 
                
                   精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life) 精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468
- 
                
                   An Introduction to Universal Artificial Intelligence An Introduction to Universal Artificial Intelligence$2,980$2,831
- 
                
                   讓 AI 好好說話!從頭打造 LLM (大型語言模型) 實戰秘笈 讓 AI 好好說話!從頭打造 LLM (大型語言模型) 實戰秘笈$680$537
- 
                
                   生成式 AI 入門 – 揭開 LLM 潘朵拉的秘密 : 語言建模、訓練微調、隱私風險、合成媒體、認知作戰、社交工程、人機關係、AI Agent、OpenAI、DeepSeek (Introduction to Generative AI) 生成式 AI 入門 – 揭開 LLM 潘朵拉的秘密 : 語言建模、訓練微調、隱私風險、合成媒體、認知作戰、社交工程、人機關係、AI Agent、OpenAI、DeepSeek (Introduction to Generative AI)$580$458
- 
                
                   Microsoft Azure 學習手冊|雲端運算與雲端系統開發的關鍵知識 (Learning Microsoft Azure: Cloud Computing and Development Fundamentals) Microsoft Azure 學習手冊|雲端運算與雲端系統開發的關鍵知識 (Learning Microsoft Azure: Cloud Computing and Development Fundamentals)$880$695
- 
                
                   AI 應用程式開發|活用 ChatGPT 與 LLM 技術開發實作, 2/e (Developing Apps with GPT-4 and ChatGPT: Build Intelligent Chatbots, Content Generators, and More, 2/e) AI 應用程式開發|活用 ChatGPT 與 LLM 技術開發實作, 2/e (Developing Apps with GPT-4 and ChatGPT: Build Intelligent Chatbots, Content Generators, and More, 2/e)$680$537
- 
                
                   深度學習詳解|台大李宏毅老師機器學習課程精粹 深度學習詳解|台大李宏毅老師機器學習課程精粹$750$593
- 
                
                   OpenAI API 開發手冊 - 用 Responses API、Realtime API、MCP、Agents SDK、Function calling 打造即時語音、RAG、Agent 應用 OpenAI API 開發手冊 - 用 Responses API、Realtime API、MCP、Agents SDK、Function calling 打造即時語音、RAG、Agent 應用$790$624
商品描述
This first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs, Hybrid Models, Score-based Generative Models, Energy-based Models, and Large Language Models. In addition, Generative AI Systems are discussed, demonstrating how deep generative models can be used for neural compression, among others.
Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics of machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It should find interest among students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics who wish to get familiar with deep generative modeling.
In order to engage with a reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on the author's GitHub site: github.com/jmtomczak/intro_dgm
The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
商品描述(中文翻譯)
這本關於生成式人工智慧背後模型的首部綜合性書籍已被徹底修訂,涵蓋所有主要類別的深度生成模型:混合模型、機率電路(Probabilistic Circuits)、自回歸模型(Autoregressive Models)、基於流的模型(Flow-based Models)、潛變量模型(Latent Variable Models)、生成對抗網路(GANs)、混合模型、基於分數的生成模型(Score-based Generative Models)、基於能量的模型(Energy-based Models)以及大型語言模型(Large Language Models)。此外,書中還討論了生成式人工智慧系統,展示了深度生成模型如何用於神經壓縮等應用。
《深度生成建模》旨在吸引對數學背景有一定了解的好奇學生、工程師和研究人員,這些背景包括本科微積分、線性代數、機率論,以及機器學習、深度學習和使用Python及PyTorch(或其他深度學習庫)的基礎知識。這本書應該會引起來自計算機科學、工程、數據科學、物理學和生物資訊學等多個領域的學生和研究人員的興趣,他們希望熟悉深度生成建模。為了吸引讀者,書中以具體的例子和程式碼片段介紹基本概念。與書籍配套的完整程式碼可在作者的GitHub網站上獲得:github.com/jmtomczak/intro_dgm
這本書的最終目標是概述深度生成建模中最重要的技術,並最終使讀者能夠制定新模型並實施它們。
作者簡介
Jakub M. Tomczak is an associate professor and the head of the Generative AI group at the Eindhoven University of Technology (TU/e). Before joining the TU/e, he was an assistant professor at Vrije Universiteit Amsterdam, a deep learning researcher (Engineer, Staff) in Qualcomm AI Research in Amsterdam, a Marie Sklodowska-Curie individual fellow in Prof. Max Welling's group at the University of Amsterdam, and an assistant professor and a postdoc at the Wroclaw University of Technology. His main research interests include ML, DL, deep generative modeling (GenAI), and Bayesian inference, with applications to image/text processing, Life Sciences, Molecular Sciences, and quantitative finance. He serves as an action editor of "Transactions of Machine Learning Research", and an area chair of major AI conferences (e.g., NeurIPS, ICML, AISTATS). He is a program chair of NeurIPS 2024. He is the author of the book entitled "Deep Generative Modeling", the first comprehensive book on Generative AI. He is also the founder of Amsterdam AI Solutions.
作者簡介(中文翻譯)
Jakub M. Tomczak 是埃因霍溫科技大學 (TU/e) 的副教授及生成式人工智慧小組的負責人。在加入 TU/e 之前,他曾擔任阿姆斯特丹自由大學的助理教授,並在高通 (Qualcomm) 阿姆斯特丹的人工智慧研究部門擔任深度學習研究員 (工程師,員工),還曾在阿姆斯特丹大學的 Max Welling 教授小組中擔任 Marie Sklodowska-Curie 個人研究員,以及在弗羅茨瓦夫科技大學擔任助理教授和博士後研究員。他的主要研究興趣包括機器學習 (ML)、深度學習 (DL)、深度生成建模 (GenAI) 和貝葉斯推斷,應用於影像/文本處理、生命科學、分子科學和量化金融。他擔任《機器學習研究期刊 (Transactions of Machine Learning Research)》的行動編輯,以及多個主要人工智慧會議的區域主席 (例如 NeurIPS、ICML、AISTATS)。他是 NeurIPS 2024 的程式主席。他是書籍《深度生成建模 (Deep Generative Modeling)》的作者,這是關於生成式人工智慧的第一本綜合性書籍。他也是阿姆斯特丹人工智慧解決方案公司的創辦人。
 
 
     
    
 
     
     
     
     
     
     
     
    