Computational Learning Theories: Models for Artificial Intelligence Promoting Learning Processes
暫譯: 計算學習理論:促進人工智慧學習過程的模型
Gibson, David C., Ifenthaler, Dirk
- 出版商: Springer
- 出版日期: 2025-07-18
- 售價: $5,520
- 貴賓價: 9.5 折 $5,244
- 語言: 英文
- 頁數: 154
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031659007
- ISBN-13: 9783031659003
-
相關分類:
Machine Learning、Natural Language Processing
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book shows how artificial intelligence grounded in learning theories can promote individual learning, team productivity and multidisciplinary knowledge-building. It advances the learning sciences by integrating learning theory with computational biology and complexity, offering an updated mechanism of learning, which integrates previous theories, provides a basis for scaling from individuals to societies, and unifies models of psychology, sociology and cultural studies.
The book provides a road map for the development of AI that addresses the central problems of learning theory in the age of artificial intelligence including:
- optimizing human-machine collaboration
- promoting individual learning
- balancing personalization with privacy
- dealing with biases and promoting fairness
- explaining decisions and recommendations to build trust and accountability
- continuously balancing and adapting to individual, team and organizational goals
- generating and generalizing knowledge across fields and domains
The book will be of interest to educational professionals, researchers, and developers of educational technology that utilize artificial intelligence.
商品描述(中文翻譯)
這本書展示了如何基於學習理論的人工智慧可以促進個人學習、團隊生產力和多學科知識建構。它通過將學習理論與計算生物學和複雜性整合,推進了學習科學,提供了一種更新的學習機制,整合了先前的理論,為從個體擴展到社會提供了基礎,並統一了心理學、社會學和文化研究的模型。
本書提供了一個人工智慧發展的路線圖,針對人工智慧時代學習理論的核心問題,包括:
- 優化人機協作
- 促進個人學習
- 在個性化與隱私之間取得平衡
- 處理偏見並促進公平
- 解釋決策和建議以建立信任和問責
- 持續平衡和適應個人、團隊和組織的目標
- 在各個領域和範疇中生成和概括知識
本書將吸引教育專業人士、研究人員以及利用人工智慧的教育科技開發者的興趣。