An Introduction to the Modern Martingale Theory and Applications: An Analytic View
暫譯: 現代鞅理論及其應用導論:分析視角

Urbina-Romero, Wilfredo, Rios, Ricardo

  • 出版商: Springer
  • 出版日期: 2025-10-02
  • 售價: $2,960
  • 貴賓價: 9.5$2,812
  • 語言: 英文
  • 頁數: 276
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031889029
  • ISBN-13: 9783031889028
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

商品描述

Martingale theory is a cornerstone of modern probability, offering a natural extension of the study of sums of independent random variables. Although its roots can be traced back to the work of Paul Lévy in 1937, it was Joseph L. Doob in the 1940s who formally developed the theory, culminating in his landmark book Stochastic Processes in 1953. Since then, martingale theory has evolved significantly, with deep contributions from mathematicians such as Donald L. Burkholder, Richard Gundy, and Burgess Davis, among others. This is what is now known as advanced martingale theory, which began with the publication of Burkholder's seminal paper Martingale Transforms in 1966.

This book provides a comprehensive treatment of both classical and advanced martingale theory. It opens with a historical introduction, exploring foundational functions such as Rademacher, Haar, and Walsh functions, before delving into the core concepts of conditional probability. The classical theory, as developed by Doob, is meticulously presented, followed by an in-depth examination of modern advancements, including Burkholder's inequalities, Burkholder-Davis-Gundy inequality, and their generalizations, as well as good-lambda inequalities. The final chapter showcases a wide range of applications, highlighting the theory's profound impact on Banach space theory, harmonic analysis, and beyond.

Intended for graduate students and researchers in probability and analysis, this book serves as both an introduction and a reference, offering a clear and structured approach to a subject that continues to shape mathematical research and its applications.

商品描述(中文翻譯)

馬丁蓋爾理論是現代概率論的基石,為獨立隨機變數之和的研究提供了自然的擴展。雖然其根源可以追溯到保羅·勒維(Paul Lévy)在1937年的工作,但正式發展該理論的是約瑟夫·L·杜布(Joseph L. Doob),他在1940年代的工作 culminated in his landmark book《隨機過程》(Stochastic Processes)於1953年出版。自那時以來,馬丁蓋爾理論有了顯著的演變,數學家如唐納德·L·伯克霍爾德(Donald L. Burkholder)、理查德·甘迪(Richard Gundy)和伯吉斯·戴維斯(Burgess Davis)等人對其做出了深刻的貢獻。這就是現在所稱的高級馬丁蓋爾理論,始於伯克霍爾德於1966年發表的開創性論文《馬丁蓋爾變換》(Martingale Transforms)。

本書全面介紹了古典和高級馬丁蓋爾理論。書中首先提供歷史介紹,探討基礎函數,如拉德馬赫(Rademacher)、哈爾(Haar)和沃爾什(Walsh)函數,然後深入核心概念——條件概率。杜布所發展的古典理論被細緻地呈現,隨後深入檢視現代的進展,包括伯克霍爾德不等式、伯克霍爾德-戴維斯-甘迪不等式及其推廣,以及良好λ不等式。最後一章展示了廣泛的應用,突顯了該理論對巴拿赫空間理論、調和分析等領域的深遠影響。

本書旨在為研究生和概率及分析領域的研究人員提供介紹和參考,提供清晰且結構化的方法來探討這一持續影響數學研究及其應用的主題。

作者簡介

Ricardo Rios is an Associate Professor at the Facultad de Ciencias, Universidad Central de Venezuela. He holds a Ph.D. in Mathematics from the University of Paris-Saclay (Paris XI) and an M.Sc. and B.Sc. in Mathematics from Universidad Central de Venezuela. His research focuses on nonparametric functional estimation with dependent data, probability theory, statistics, and stochastic processes, with applications in martingale theory and machine learning.

Wilfredo Urbina-Romero is an Associate Professor at Roosevelt University. He earned his Ph.D. in Mathematics from the University of Minnesota and his M.Sc. and B.Sc. in Mathematics from Universidad Central de Venezuela. His research interests include harmonic analysis, orthogonal polynomial theory, and martingale theory.

作者簡介(中文翻譯)

Ricardo Rios 是委內瑞拉中央大學(Universidad Central de Venezuela)科學學院的副教授。他擁有巴黎薩克雷大學(University of Paris-Saclay, Paris XI)的數學博士學位,以及委內瑞拉中央大學的數學碩士和學士學位。他的研究專注於依賴數據的非參數函數估計、概率論、統計學和隨機過程,並應用於馬丁蓋爾理論和機器學習。

Wilfredo Urbina-Romero 是羅斯福大學(Roosevelt University)的副教授。他在明尼蘇達大學(University of Minnesota)獲得數學博士學位,並在委內瑞拉中央大學獲得數學碩士和學士學位。他的研究興趣包括調和分析、正交多項式理論和馬丁蓋爾理論。