Artificial Intelligence-Empowered Bio-Medical Applications: Challenges, Solutions and Development Guidelines
暫譯: 人工智慧驅動的生物醫學應用:挑戰、解決方案與發展指導原則

Panagoulias, Dimitrios P., Tsihrintzis, George A., Virvou, Maria

  • 出版商: Springer
  • 出版日期: 2025-06-18
  • 售價: $5,520
  • 貴賓價: 9.5$5,244
  • 語言: 英文
  • 頁數: 287
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031901738
  • ISBN-13: 9783031901737
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The book delves into advancements in personalized medicine, highlighting the transition from generalized treatments to tailored strategies through AI and machine learning. It first emphasizes the role of biomarkers in training predictive models and neural networks, enhancing disease diagnosis and patient management. It then explores AI-driven healthcare systems, particularly the use of microservices to improve scalability and management. Additionally, it examines regulatory challenges, the need for AI explainability, and the PINXEL framework, which defines explainability requirements using the technology acceptance model (TAM) and the diffusion of innovation theory (DOI).

Furthermore, the book evaluates the capabilities of large language models, including ChatGPT and GPT-4V, in medical applications, with a focus on diagnosis and structured assessments in general pathology. Lastly, it introduces an AI-powered system for primary care diagnosis that integrates language models, machine learning, and rule-based systems. The interactive AI assistants "MedPrimary AI assistant" and "Dermacen Analytica" leverage natural language processing, image analysis, and multi-modal AI to enhance patient interactions and provide healthcare professionals with high-accuracy, personalized diagnostic support.

By taking a holistic approach, the book underscores the integration of AI into healthcare, aiming to support medical professionals in patient diagnosis and management with precision and adaptability.

商品描述(中文翻譯)

本書深入探討個人化醫療的進展,強調從一般化治療轉向透過人工智慧(AI)和機器學習的量身定制策略。首先,它強調生物標記在訓練預測模型和神經網絡中的角色,增強疾病診斷和病人管理。接著,它探討了以AI驅動的醫療系統,特別是使用微服務來改善可擴展性和管理。此外,本書還檢視了監管挑戰、對AI可解釋性的需求,以及PINXEL框架,該框架使用技術接受模型(TAM)和創新擴散理論(DOI)來定義可解釋性要求。

此外,本書評估了大型語言模型的能力,包括ChatGPT和GPT-4V在醫療應用中的表現,重點關注一般病理學中的診斷和結構化評估。最後,它介紹了一個AI驅動的初級護理診斷系統,該系統整合了語言模型、機器學習和基於規則的系統。互動式AI助手「MedPrimary AI assistant」和「Dermacen Analytica」利用自然語言處理、圖像分析和多模態AI來增強病人互動,並為醫療專業人員提供高準確度的個性化診斷支持。

通過採取整體方法,本書強調AI在醫療保健中的整合,旨在以精確和適應性支持醫療專業人員進行病人診斷和管理。