Non-Self-Adjoint Schrödinger Operator with a Periodic Potential: Spectral Theories for Scalar and Vectorial Cases and Their Generalizations
暫譯: 具有週期性勢能的非自伴薛丁格算子:標量與向量情況的譜理論及其推廣

Veliev, Oktay

  • 出版商: Springer
  • 出版日期: 2025-07-03
  • 售價: $7,200
  • 貴賓價: 9.5$6,840
  • 語言: 英文
  • 頁數: 472
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031902580
  • ISBN-13: 9783031902581
  • 相關分類: 數學
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book offers a comprehensive exploration of spectral theory for non-self-adjoint differential operators with complex-valued periodic coefficients, addressing one of the most challenging problems in mathematical physics and quantum mechanics: constructing spectral expansions in the absence of a general spectral theorem. It examines scalar and vector Schrödinger operators, including those with PT-symmetric periodic optical potentials, and extends these methodologies to higher-order operators with periodic matrix coefficients.

The second edition significantly expands upon the first by introducing two new chapters that provide a complete description of the spectral theory of non-self-adjoint differential operators with periodic coefficients. The first of these new chapters focuses on the vector case, offering a detailed analysis of the spectral theory of non-self-adjoint Schrödinger operators with periodic matrix potentials. It thoroughly examines eigenvalues, eigenfunctions, and spectral expansions for systems of one-dimensional Schrödinger operators. The second chapter develops a comprehensive spectral theory for all ordinary differential operators, including higher-order and vector cases, with periodic coefficients. It also includes a complete classification of the spectrum for PT-symmetric periodic differential operators, making this edition the most comprehensive treatment of these topics to date.

The book begins with foundational topics, including spectral theory for Schrödinger operators with complex-valued periodic potentials, and systematically advances to specialized cases such as the Mathieu-Schrödinger operator and PT-symmetric periodic systems. By progressively increasing the complexity, it provides a unified and accessible framework for students and researchers. The approaches developed here open new horizons for spectral analysis, particularly in the context of optics, quantum mechanics, and mathematical physics.

商品描述(中文翻譯)

本書全面探討了具有複值週期係數的非自伴微分算子的譜理論,解決了數學物理和量子力學中最具挑戰性的問題之一:在缺乏一般譜定理的情況下構建譜展開。它考察了標量和向量薛丁格算子,包括那些具有PT對稱週期光學勢的算子,並將這些方法擴展到具有週期矩陣係數的高階算子。

第二版在第一版的基礎上顯著擴展,新增了兩個章節,對具有週期係數的非自伴微分算子的譜理論進行了完整的描述。這兩個新章節中的第一個專注於向量情況,詳細分析了具有週期矩陣勢的非自伴薛丁格算子的譜理論。它徹底檢視了一維薛丁格算子系統的特徵值、特徵函數和譜展開。第二章為所有普通微分算子,包括高階和向量情況,發展了一個全面的譜理論,並對PT對稱週期微分算子的譜進行了完整的分類,使本版成為迄今為止對這些主題最全面的處理。

本書從基礎主題開始,包括具有複值週期勢的薛丁格算子的譜理論,並系統地推進到專門案例,如馬修-薛丁格算子和PT對稱週期系統。通過逐步增加複雜性,為學生和研究人員提供了一個統一且易於理解的框架。這裡發展的方法為譜分析開辟了新視野,特別是在光學、量子力學和數學物理的背景下。

作者簡介

Oktay Veliev received his B.S. degree in Mathematics in 1977 and Ph.D. degree in Mathematics in 1980 from Moscow State University, earning a Doctor of Sciences degree in 1989. From 1980 to 1983, he was a researcher and then a senior researcher at the Institute of Mathematics of the Academy of Sciences of Azerbaijan SSR. At Baku State University (Azerbaijan), he has been Associate Professor, Professor, and Head of the Department of Functional Analysis. Between 1993 and 1997, he was President of the Azerbaijan Mathematical Society. He was Visiting Professor at the University of Nantes, the Institute of Mathematics at the ETH, and Sussex University. From 1997 to 2002, he was Professor at Dokuz Eylul University and since 2003 has been Professor at Dogus University.

作者簡介(中文翻譯)

Oktay Veliev 於1977年獲得莫斯科國立大學數學學士學位,並於1980年獲得數學博士學位,於1989年獲得科學博士學位。1980年至1983年間,他在亞塞拜然蘇維埃社會主義共和國科學院數學研究所擔任研究員,隨後成為高級研究員。在巴庫國立大學(亞塞拜然),他曾擔任副教授、教授及函數分析系主任。1993年至1997年間,他擔任亞塞拜然數學學會會長。他曾擔任南特大學、瑞士聯邦理工學院數學研究所及薩塞克斯大學的訪問教授。1997年至2002年,他在多庫茲艾伊魯大學擔任教授,自2003年起在多古斯大學擔任教授。