Moving Target Defense in the Smart Grid
暫譯: 智慧電網中的移動目標防禦

Deng, Ruilong, Zhang, Zhenyong, Liu, Mengxiang

  • 出版商: Springer
  • 出版日期: 2025-11-09
  • 售價: $7,220
  • 貴賓價: 9.5$6,859
  • 語言: 英文
  • 頁數: 162
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031923774
  • ISBN-13: 9783031923777
  • 相關分類: Penetration-test
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Low-carbon goals, energy crisis, and increasing electricity demand lead to the integration of advanced electronic and communication devices into the smart grid to enable environmental-friendly, real-time, and economic operation and control. However, the vulnerabilities exposed in the IP-based devices and communication networks make the smart grid prone to cyberattacks. For example, the false data injection attack is one of the critical cyberattacks that threatens the system operations such as state estimation, voltage control, economic dispatch, and etc. Observing that the design of cyberattacks on the smart grid depends on the attacker's knowledge of certain key parameters such as the grid topology and line configurations, an innovative defensive mechanism is to proactively perturb these key parameters to prevent the attacker from knowing this related information for constructing cyberattacks. This proactive perturbation strategy is termed as moving target defense (MTD), which mitigates this risk by dynamically altering the power line reactance, making it harder for adversaries to construct effective cyberattacks. Unlike static countermeasures, MTD enhances smart grid cybersecurity by continuously reshaping the attack surface. Since MTD increases the system uncertainty and complexity of the smart grid, the opportunity for the attacker to successfully launch cyberattacks is reduced.

This book provides a comprehensive analysis of the theoretical foundations of MTD, the optimal deployment of this defense strategy, and the deep impact of MTD on the system's operation and control. To begin with, a thorough literature review is conducted to summarize the cyber-, physical-, and cyber-physical coordinated MTD approaches. Then, a detailed theoretical analysis is provided to validate the effectiveness and completeness of MTD in terms of detecting and mitigating cyberattacks. Furthermore, the hiddenness of MTD is deeply analyzed from the attacker's perspective, leading to the development of a coordinated defense framework to enhance the MTD's hiddenness. Given the complexity resulted from the nonlinear AC state estimation, sensitivity-based approximation methods are proposed to quantify the effectiveness and hiddenness of MTD in AC power systems, forming the basis of an optimization framework to balance the MTD's effectiveness between hiddenness. Finally, considering the proactive activities caused by MTD, its impact on the system's operation and control, including the operation cost, load frequency control, and small signal stability, is theoretically and numerically analyzed. This book concludes by discussing future research directions and practical strategies for deploying MTD. The presented MTD design and the corresponding research results covered in this book will provide valuable insights for practical MTD deployment and motivate new ideas for strengthening smart grid cybersecurity.

This book will be valuable for researchers, graduate students, and industry professionals seeking a comprehensive understanding of the latest developments in MTD for smart grid cybersecurity. Designed for readers with a background in Electrical & Computer Engineering, Telecommunications, Computer Science, or related disciplines, it provides the necessary foundation to explore advanced defense strategies. The primary audiences include college students specializing in smart grid, Internet of Things, and cybersecurity, as well as researchers, consultants, and executives involved in smart grid cybersecurity and cyber-physical systems. Additionally, the book will be useful for standardization task forces developing advanced defense strategies. Beyond individual readers, institutions such as power utilities, cybersecurity firms, universities, and research organizations will find it a valuable resource for advancing knowledge and practical applications in smart grid cybersecurity.

商品描述(中文翻譯)

低碳目標、能源危機以及不斷增加的電力需求促使先進的電子和通信設備整合進入智慧電網,以實現環保、即時和經濟的運行與控制。然而,基於IP的設備和通信網路所暴露的脆弱性使得智慧電網容易受到網路攻擊。例如,虛假數據注入攻擊是威脅系統運行的關鍵網路攻擊之一,影響狀態估計、電壓控制、經濟調度等系統操作。觀察到對智慧電網的網路攻擊設計依賴於攻擊者對某些關鍵參數(如電網拓撲和線路配置)的了解,一種創新的防禦機制是主動擾動這些關鍵參數,以防止攻擊者獲取相關信息來構建網路攻擊。這種主動擾動策略稱為移動目標防禦(Moving Target Defense, MTD),通過動態改變電力線的反應,減輕這一風險,使對手更難構建有效的網路攻擊。與靜態對策不同,MTD通過不斷重塑攻擊面來增強智慧電網的網路安全性。由於MTD增加了智慧電網的系統不確定性和複雜性,攻擊者成功發起網路攻擊的機會被降低。

本書提供了對MTD理論基礎的全面分析、該防禦策略的最佳部署以及MTD對系統運行和控制的深遠影響。首先,進行了徹底的文獻回顧,以總結網路、物理和網路-物理協調的MTD方法。接著,提供了詳細的理論分析,以驗證MTD在檢測和減輕網路攻擊方面的有效性和完整性。此外,從攻擊者的角度深入分析了MTD的隱蔽性,並開發了一個協調防禦框架以增強MTD的隱蔽性。考慮到由於非線性交流狀態估計所產生的複雜性,提出了基於靈敏度的近似方法,以量化MTD在交流電力系統中的有效性和隱蔽性,形成一個優化框架的基礎,以平衡MTD的有效性與隱蔽性。最後,考慮到MTD所引起的主動活動,對其對系統運行和控制的影響,包括運行成本、負載頻率控制和小信號穩定性,進行了理論和數值分析。本書最後討論了未來的研究方向和部署MTD的實用策略。本書中介紹的MTD設計及相應的研究結果將為實際MTD部署提供寶貴的見解,並激發加強智慧電網網路安全的新思路。

本書對於尋求全面了解智慧電網網路安全中MTD最新發展的研究人員、研究生和行業專業人士將具有重要價值。該書旨在為具有電機與計算機工程、電信、計算機科學或相關學科背景的讀者提供必要的基礎,以探索先進的防禦策略。主要讀者包括專攻智慧電網、物聯網和網路安全的大學生,以及參與智慧電網網路安全和網路-物理系統的研究人員、顧問和高管。此外,本書對於開發先進防禦策略的標準化工作小組也將有所幫助。除了個別讀者外,電力公用事業、網路安全公司、大學和研究機構等機構也將發現本書是推進智慧電網網路安全知識和實用應用的寶貴資源。

作者簡介

Prof. Ruilong Deng received the B.Sc. and Ph.D. degrees both in Control Science and Engineering from Zhejiang University, Hangzhou, Zhejiang, China, in 2009 and 2014, respectively. He was a Research Fellow with Nanyang Technological University, Singapore, from 2014 to 2015; an AITF Postdoctoral Fellow with the University of Alberta, Edmonton, AB, Canada, from 2015 to 2018; and an Assistant Professor with Nanyang Technological University, from 2018 to 2019. Currently, he is a Professor with the College of Control Science and Engineering, Zhejiang University; and a Deputy Director of the State Key Laboratory of Industrial Control Technology. His research interests include the smart grid, cyber security, and control systems. He serves/served as an Associate Editor for IEEE Transactions on Smart Grid, IEEE Power Engineering Letters, IEEE/CAA Journal of Automatica Sinica, and IEEE/KICS Journal of Communications and Networks, and a Guest Editor for IEEE Transactions on Cloud Computing, IEEE Transactions on Emerging Topics in Computing, IEEE Journal of Emerging and Selected Topics in Industrial Electronics, and IET Cyber-Physical Systems: Theory & Applications. He also serves/served as a Symposium Chair for IEEE SmartGridComm, IEEE ICPS, and IEEE GLOBECOM.

Prof. Zhenyong Zhang received his Ph.D. degree from Zhejiang University, Hangzhou, China, in 2020, and bachelor degree from Central South University, Changsha, China, in 2015. He was a visiting scholar in Singapore University of Technology and Design, Singapore, from 2018 to 2019. Currently, he is a Professor with the College of Computer Science and Technology, Guizhou University, Guiyang, China. His research interests include cyber-physical system security, applied cryptography, and machine learning security.

Dr. Mengxiang Liu received the B.S. degree in Automation from Tongji University, Shanghai, in 2017 and the Ph.D. degree in Cyberspace Security from Zhejiang University, Hangzhou, in 2022. He was a Research Associate with the Department of Automatic Control and System Engineering, University of Sheffield, Sheffield, UK, from 2023 to 2024. Currently, he is a MSCA Postdoctoral Fellow with the Department of Electrical and Electronic Engineering, Imperial College London, London, UK. His research interests include smart grid, cyber resilience, and cyber-physical co-simulation.

Prof. Peng Cheng received the B.Sc. and Ph.D. degrees in Control Science and Engineering from Zhejiang University, Hangzhou, China, in 2004 and 2009, respectively. Currently, he is a Professor and Dean of the College of Control Science and Engineering, Zhejiang University. His research interests include networked sensing and control, cyber-physical systems, and control system security. He has been awarded the 2020 Changjiang Scholars Chair Professor. He serves as Associate Editors for the IEEE Transactions on Control of Network Systems. He also serves/served as Guest Editors for IEEE Transactions on Automatic Control and IEEE Transactions on Signal and Information Processing over Networks.

作者簡介(中文翻譯)

鄧瑞龍教授於2009年和2014年分別在中國浙江省杭州市的浙江大學獲得控制科學與工程的學士及博士學位。他於2014年至2015年擔任新加坡南洋理工大學的研究員;2015年至2018年擔任加拿大艾伯塔大學的AITF博士後研究員;2018年至2019年擔任新加坡南洋理工大學的助理教授。目前,他是浙江大學控制科學與工程學院的教授,並擔任國家工業控制技術重點實驗室的副主任。他的研究興趣包括智慧電網、網路安全和控制系統。他曾擔任《IEEE智慧電網期刊》、《IEEE電力工程快報》、《IEEE/CAA自動化學報》和《IEEE/KICS通訊與網路期刊》的副編輯,並擔任《IEEE雲計算期刊》、《IEEE新興計算主題期刊》、《IEEE新興與選定工業電子主題期刊》和《IET網路物理系統:理論與應用》的客座編輯。他還擔任過《IEEE智慧電網通訊會議》、《IEEE ICPS》和《IEEE GLOBECOM》的研討會主席。

張振勇教授於2020年在中國浙江省杭州市的浙江大學獲得博士學位,並於2015年在中國長沙的中南大學獲得學士學位。他於2018年至2019年擔任新加坡科技設計大學的訪問學者。目前,他是中國貴州省貴陽市貴州大學計算機科學與技術學院的教授。他的研究興趣包括網路物理系統安全、應用密碼學和機器學習安全。

劉夢翔博士於2017年在上海同濟大學獲得自動化的學士學位,並於2022年在浙江大學獲得網路空間安全的博士學位。他於2023年至2024年擔任英國謝菲爾德大學自動控制與系統工程系的研究助理。目前,他是英國倫敦帝國學院電氣與電子工程系的MSCA博士後研究員。他的研究興趣包括智慧電網、網路韌性和網路物理共同模擬。

程鵬教授於2004年和2009年分別在中國浙江省杭州市的浙江大學獲得控制科學與工程的學士及博士學位。目前,他是浙江大學控制科學與工程學院的教授及院長。他的研究興趣包括網路感測與控制、網路物理系統和控制系統安全。他曾獲得2020年長江學者特聘教授。他擔任《IEEE網路系統控制期刊》的副編輯,並擔任過《IEEE自動控制期刊》和《IEEE網路信號與信息處理期刊》的客座編輯。