Complex Analysis in One Variable and Riemann Surfaces
暫譯: 單變數複分析與黎曼曲面

Shaw, Mei-Chi, Stanton, Charles M.

  • 出版商: Springer
  • 出版日期: 2026-01-03
  • 售價: $3,630
  • 貴賓價: 9.5$3,449
  • 語言: 英文
  • 頁數: 550
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031936418
  • ISBN-13: 9783031936418
  • 相關分類: 數學
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This textbook is intended for an introductory course in the theory of complex analysis and Riemann surfaces. A special feature includes the systematic treatment of complex analysis from the point of view of partial differential equations. The main goal is to study complex analysis in one variable using modern mathematics with emphasis on its deep connections to other branches of mathematics, especially on the tremendous development of partial differential equations in the twentieth century. The book can also be used as a reference for students and researchers interested in modern concepts and techniques in one and several complex variables, algebraic and complex geometry, partial differential equations and geometric analysis.

The book is reasonably self-contained with much background material given in the appendices. Many examples and exercises are provided. The text is based on lecture notes taught by the first author over the years at the University of Notre Dame to widely varied audiences, including students in mathematics, physics, engineering and other sciences. By taking advantage of the development of Hilbert space methods in partial differential equations, this textbook provides a much-needed update on complex function theory and Riemann surfaces.

In the first five chapters, the authors introduce some background material in complex analysis in one variable using only multivariable calculus. This includes the Cauchy integral formula with its applications, the Riemann mapping theorem and the theorems of Weierstrass and Mittag-Leffler. Starting from Chapter 6, a comprehensive study of the roles that partial differential equations play in complex analysis is presented systematically with focus on the Cauchy-Riemann equation and the Laplacian. A thorough treatment of the Laplace and Poisson equations with both classical and Hilbert space approaches is given and applied to obtain function theory on Riemann surfaces. The book also introduces several complex variables and bridges the gap between one and several complex variables.

商品描述(中文翻譯)

這本教科書旨在用於複雜分析和黎曼曲面的理論入門課程。其特點之一是從偏微分方程的角度系統性地處理複雜分析。主要目標是使用現代數學研究單變數的複雜分析,強調其與數學其他分支之間的深刻聯繫,特別是二十世紀偏微分方程的巨大發展。本書也可作為對現代概念和技術感興趣的學生和研究人員的參考,涵蓋單個和多個複變數、代數幾何和複幾何、偏微分方程及幾何分析。

本書內容相對自足,附錄中提供了大量背景材料。書中提供了許多例子和練習。文本基於第一作者多年來在聖母大學教授的講義,面對的聽眾包括數學、物理、工程及其他科學的學生。通過利用偏微分方程中希爾伯特空間方法的發展,這本教科書對複變函數理論和黎曼曲面提供了急需的更新。

在前五章中,作者使用多變數微積分介紹了一些單變數複雜分析的背景材料。這包括柯西積分公式及其應用、黎曼映射定理以及魏爾斯特拉斯和米塔格-萊夫勒的定理。從第六章開始,系統地介紹偏微分方程在複雜分析中所扮演的角色,重點放在柯西-黎曼方程和拉普拉斯算子上。對拉普拉斯方程和泊松方程的徹底處理,採用經典和希爾伯特空間的方法,並應用於獲得黎曼曲面上的函數理論。本書還介紹了多個複變數,並彌合了單個和多個複變數之間的差距。

作者簡介

Mei-Chi Shaw is Emerita professor of mathematics at the University of Notre Dame. Her research interests are in several complex variables, partial differential equations and complex geometry. She is the co-recipient of the 2019 Bergman prize, American Mathematical Society. Charles Stanton is retired from Manchester University and is affiliated with the Department of Mathematics, University of Notre Dame. His research interests are in uniform algebras and complex analysis.

作者簡介(中文翻譯)

邵美琪是聖母大學的數學名譽教授。她的研究興趣包括多重複雜變數、偏微分方程和複幾何。她是2019年美國數學學會的伯格曼獎共同得主。查爾斯·斯坦頓已從曼徹斯特大學退休,並與聖母大學數學系有關聯。他的研究興趣包括均勻代數和複分析。