Linear Dimensionality Reduction
暫譯: 線性降維
Franc, Alain
- 出版商: Springer
- 出版日期: 2025-10-02
- 售價: $3,720
- 貴賓價: 9.5 折 $3,534
- 語言: 英文
- 頁數: 152
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031957849
- ISBN-13: 9783031957840
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
商品描述
This book provides an overview of some classical linear methods in Multivariate Data Analysis. This is an old domain, well established since the 1960s, and refreshed timely as a key step in statistical learning. It can be presented as part of statistical learning, or as dimensionality reduction with a geometric flavor. Both approaches are tightly linked: it is easier to learn patterns from data in low-dimensional spaces than in high-dimensional ones. It is shown how a diversity of methods and tools boil down to a single core method, PCA with SVD, so that the efforts to optimize codes for analyzing massive data sets like distributed memory and task-based programming, or to improve the efficiency of algorithms like Randomized SVD, can focus on this shared core method, and benefit all methods. This book is aimed at graduate students and researchers working on massive data who have encountered the usefulness of linear dimensionality reduction and are looking for a recipe to implement it. It has been written according to the view that the best guarantee of a proper understanding and use of a method is to study in detail the calculations involved in implementing it. With an emphasis on the numerical processing of massive data, it covers the main methods of dimensionality reduction, from linear algebra foundations to implementing the calculations. The basic requisite elements of linear and multilinear algebra, statistics and random algorithms are presented in the appendix.
商品描述(中文翻譯)
本書提供了多變量數據分析中一些經典線性方法的概述。這是一個自1960年代以來已經建立的舊領域,並且隨著統計學習的關鍵步驟而及時更新。它可以作為統計學習的一部分來呈現,或作為具有幾何特徵的降維方法。這兩種方法是緊密相連的:在低維空間中從數據中學習模式比在高維空間中更容易。書中展示了各種方法和工具如何歸結為一個核心方法,即使用奇異值分解(SVD)的主成分分析(PCA),因此對於分析大規模數據集的代碼優化(如分佈式記憶體和基於任務的編程)或提高算法效率(如隨機化SVD)的努力,可以集中於這個共享的核心方法,並使所有方法受益。
本書的目標讀者是研究大規模數據的研究生和研究人員,他們已經體會到線性降維的實用性,並尋求實施的具體方法。書中根據這樣的觀點撰寫:對於正確理解和使用一種方法的最佳保證是詳細研究實施過程中涉及的計算。強調對大規模數據的數值處理,涵蓋了從線性代數基礎到計算實施的主要降維方法。附錄中介紹了線性和多線性代數、統計學和隨機算法的基本必要元素。
作者簡介
Alain Franc is a senior researcher at INRAE (National Research Institute for Agriculture, Food and the Environment) and INRIA (National Institute for Research in Digital Science and Technology). He works on dimension reduction and statistical modelling with applications to the discovery of patterns in biodiversity. His focus is on the development of methods for handling massive data sets, which is a challenge for high-performance computing.
作者簡介(中文翻譯)
阿蘭·法蘭克是法國國家農業、食品與環境研究所(INRAE)和法國國家數位科學與技術研究所(INRIA)的高級研究員。他專注於降維和統計建模,並應用於生物多樣性模式的發現。他的重點是開發處理大規模數據集的方法,這對高效能計算來說是一項挑戰。