Operator Space Tensor Norms
暫譯: 運算子空間張量範數

Chávez-Domínguez, Javier Alejandro, Dimant, Verónica, Galicer, Daniel

  • 出版商: Springer
  • 出版日期: 2025-09-27
  • 售價: $3,170
  • 貴賓價: 9.5$3,012
  • 語言: 英文
  • 頁數: 189
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031962087
  • ISBN-13: 9783031962080
  • 相關分類: Functional-programming
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides a comprehensive introduction to the systematic theory of tensor products and tensor norms within the framework of operator spaces. The use of tensor products has significantly advanced functional analysis and other areas of mathematics and physics, and the field of operator spaces is no exception. Building on the theory of tensor products in Banach spaces, this work adapts the definitions and results to the operator space context. This approach goes beyond a mere translation of existing results. It introduces new insights, techniques, and hypotheses to address the many challenges of the non-commutative setting, revealing several notable differences to the classical theory. This text is expected to be a valuable resource for researchers and advanced students in functional analysis, operator theory, and related fields, offering new perspectives for both the mathematics and physics communities. By presenting several open problems, it also serves as a potential source for further research, particularly for those working in operator spaces or operator algebras.

商品描述(中文翻譯)

本書提供了有關運算子空間框架內的張量積和張量範數系統理論的全面介紹。張量積的使用顯著推進了泛函分析及其他數學和物理領域,而運算子空間的領域也不例外。本書基於巴拿赫空間中的張量積理論,將定義和結果調整為運算子空間的背景。這種方法不僅僅是對現有結果的翻譯,而是引入了新的見解、技術和假設,以應對非交換環境中的許多挑戰,揭示了與經典理論的幾個顯著差異。本書預期將成為泛函分析、運算子理論及相關領域的研究人員和高級學生的重要資源,為數學和物理社群提供新的視角。通過提出幾個未解決的問題,本書也成為進一步研究的潛在來源,特別是對於那些在運算子空間或運算子代數中工作的研究者。

作者簡介

Javier Alejandro Chávez-Domínguez is an Associate Professor in the Department of Mathematics of the University of Oklahoma (USA). His main research interest is Functional Analysis with an emphasis on its non-linear and non-commutative aspects, particularly Operator Spaces, Tensor Products and Operator Ideals, and Quantum Graphs/Metric Spaces. Verónica Dimant is a Full Professor at the University of San Andrés (Argentina) and Independent Researcher at CONICET. Her research interest lies in Non-linear Functional Analysis with a focus on Holomorphy, Polynomials and Tensor Products in Banach spaces and operator spaces. Daniel Galicer is an Associate Professor at Universidad Torcuato Di Tella (Argentina) and an Independent Researcher at IMAS-CONICET. His research focuses on Functional Analysis, with an emphasis on the Local Theory of Banach Spaces, Infinite-Dimensional Analysis, Asymptotic Geometric Analysis, Tensor Products, and the interactions between Analysis and Probability.

作者簡介(中文翻譯)

哈維爾·亞歷杭德羅·查韋斯-多明格斯是美國奧克拉荷馬大學數學系的副教授。他的主要研究興趣是泛函分析,特別強調其非線性和非交換性方面,尤其是運算子空間、張量積和運算子理想,以及量子圖/度量空間。維羅妮卡·迪曼特是阿根廷聖安德烈斯大學的正教授,並且是CONICET的獨立研究員。她的研究興趣在於非線性泛函分析,專注於全純性、在巴拿赫空間和運算子空間中的多項式及張量積。丹尼爾·加利塞爾是阿根廷托爾夸托·迪·泰拉大學的副教授,並且是IMAS-CONICET的獨立研究員。他的研究專注於泛函分析,特別強調巴拿赫空間的局部理論、無限維分析、漸近幾何分析、張量積,以及分析與概率之間的相互作用。