Causal Discovery: Foundations, Algorithms and Applications
暫譯: 因果發現:基礎、演算法與應用
Sucar, Luis Enrique
- 出版商: Springer
- 出版日期: 2025-10-28
- 售價: $4,130
- 貴賓價: 9.5 折 $3,924
- 語言: 英文
- 頁數: 228
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031983440
- ISBN-13: 9783031983443
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book presents an overview of causal discovery, an emergent field with important developments in the last few years, and multiple applications in several fields.
The book is divided into three parts. The first part provides the necessary background on causal graphical models and causal reasoning. The second describes the main algorithms and techniques for causal discovery: (a) causal discovery from observational data, (b) causal discovery from interventional data, (c) causal discovery from temporal data, and (d) causal reinforcement learning. The third part provides several examples of causal discovery in practice, including applications in biomedicine, social sciences, artificial intelligence and robotics.
Topics and features:
- Covers the main types of causal discovery: learning from observational data, learning from interventional data, and learning from temporal data
This book can be used as a textbook for an advanced undergraduate or a graduate course on causal discovery for students of computer science, engineering, social sciences, etc. It can also be used as a complement to a course on causality, together with another text on causal reasoning. It could also serve as a reference book for professionals that want to apply causal models in different areas, or anyone who is interested in knowing the basis of these techniques.
The intended audience are students and professionals in computer science, statistics and
engineering who want to know the principles of causal discovery and / or applied them in different
domains. It could also be of interest to students and professionals in other areas who want to apply
causal discovery, for instance in medicine and economics.
商品描述(中文翻譯)
這本書概述了因果發現,這是一個在過去幾年中有重要發展的新興領域,並在多個領域中有多種應用。
本書分為三個部分。第一部分提供了因果圖模型和因果推理的必要背景。第二部分描述了因果發現的主要算法和技術:(a) 從觀察數據中進行因果發現,(b) 從干預數據中進行因果發現,(c) 從時間數據中進行因果發現,以及 (d) 因果強化學習。第三部分提供了幾個因果發現的實際例子,包括在生物醫學、社會科學、人工智慧和機器人學中的應用。
主題和特點:
- 涵蓋因果發現的主要類型:從觀察數據中學習、從干預數據中學習,以及從時間數據中學習
這本書可以作為高級本科或研究生課程的教科書,針對計算機科學、工程、社會科學等領域的學生。它也可以作為因果性課程的補充教材,與其他因果推理的文本一起使用。它還可以作為希望在不同領域應用因果模型的專業人士的參考書,或是任何對這些技術基礎感興趣的人。
目標讀者是計算機科學、統計學和工程領域的學生和專業人士,他們希望了解因果發現的原則和/或在不同領域中應用這些原則。對於希望在醫學和經濟學等其他領域應用因果發現的學生和專業人士來說,這本書也可能會引起他們的興趣。
作者簡介
L. Enrique Sucar is Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics, Puebla, Mexico. He has published more than 400 papers in refereed journals and conferences, and is author of the Springer book, Probabilistic Graphical Models (2021, 2nd ed.).
作者簡介(中文翻譯)
L. Enrique Sucar 是墨西哥普埃布拉國立天文學、光學與電子學研究所的高級研究科學家。他在經過審核的期刊和會議上發表了超過400篇論文,並且是Springer書籍《概率圖模型》(2021年,第二版)的作者。