商品描述
This book offers a comprehensive exploration of the intersection between Large Language Models (LLMs) and recommendation systems, serving as a practical guide for practitioners, researchers, and students in AI, natural language processing, and data science. It addresses the limitations of traditional recommendation techniques--such as their inability to fully understand nuanced language, reason dynamically over user preferences, or leverage multi-modal data--and demonstrates how LLMs can revolutionize personalized recommendations. By consolidating fragmented research and providing structured, hands-on tutorials, the book bridges the gap between cutting-edge research and real-world application, empowering readers to design and deploy next-generation recommender systems. Structured for progressive learning, the book covers foundational LLM concepts, the evolution from classic to LLM-powered recommendation systems, and advanced topics including end-to-end LLM recommenders, conversational agents, and multi-modal integration. Each chapter blends theoretical insights with practical coding exercises and real-world case studies, such as fashion recommendation and generative content creation. The final chapters discuss emerging challenges, including privacy, fairness, and future trends, offering a forward-looking roadmap for research and application. Readers with a basic understanding of machine learning and NLP will find this resource both accessible and invaluable for building effective, modern recommendation systems enhanced by LLMs.
商品描述(中文翻譯)
本書全面探討大型語言模型(Large Language Models, LLMs)與推薦系統之間的交集,作為人工智慧、自然語言處理及數據科學領域的從業者、研究人員和學生的實用指南。它針對傳統推薦技術的局限性進行討論,例如無法充分理解細微的語言、無法根據用戶偏好進行動態推理或無法利用多模態數據,並展示了LLMs如何徹底改變個性化推薦。通過整合零散的研究並提供結構化的實作教程,本書彌合了前沿研究與實際應用之間的鴻溝,使讀者能夠設計和部署下一代推薦系統。
本書結構設計以漸進式學習為主,涵蓋LLM的基礎概念、從經典推薦系統到LLM驅動的推薦系統的演變,以及包括端到端LLM推薦系統、對話代理和多模態整合等進階主題。每一章節將理論見解與實際編碼練習及真實案例研究相結合,例如時尚推薦和生成內容創作。最後幾章討論新興挑戰,包括隱私、公平性和未來趨勢,提供了一個前瞻性的研究與應用路線圖。對於具備基本機器學習和自然語言處理知識的讀者來說,本書既易於理解又對於構建有效的、現代化的由LLMs增強的推薦系統具有重要價值。
作者簡介
Jianqiang (Jay) Wang is an AI and data science leader with over 16 years of experience developing machine learning, search, and recommendation systems across leading tech companies including Microsoft, Snap, Twitter, and Kuaishou. He has led data science and AI teams and built large-scale systems for content understanding, personalization, and monetization. Jay is the founder of Curify AI, an AI-powered productivity and content platform, where he focuses on integrating Large Language Models into real-world applications. His current interests span retrieval-augmented generation, multimodal AI, and generative recommendation systems. He holds a Ph.D. in Statistics and brings a blend of academic rigor and industrial experience to this hands-on guide for building LLM-enhanced recommendation systems.
作者簡介(中文翻譯)
王建強 (Jay Wang) 是一位人工智慧和數據科學領導者,擁有超過 16 年的經驗,曾在包括 Microsoft、Snap、Twitter 和 快手 (Kuaishou) 等領先科技公司開發機器學習、搜尋和推薦系統。他曾領導數據科學和人工智慧團隊,並建立大型系統以進行內容理解、個性化和貨幣化。
Jay 是 Curify AI 的創始人,這是一個以人工智慧驅動的生產力和內容平台,他專注於將大型語言模型 (Large Language Models) 整合到現實世界的應用中。他目前的興趣涵蓋檢索增強生成 (retrieval-augmented generation)、多模態人工智慧 (multimodal AI) 和生成推薦系統 (generative recommendation systems)。
他擁有統計學博士學位,並將學術嚴謹性與產業經驗結合,為這本實用指南提供了建立 LLM 增強推薦系統的知識。