Retrieval-Augmented Generation (RAG): Empowering Large Language Models (LLMs)
Islam), Ray Islam (Mohammad Rubyet
- 出版商: Dr. Ray Islam (Mohammad Rubyet Islam)
- 出版日期: 2023-12-28
- 售價: $520
- 貴賓價: 9.5 折 $494
- 語言: 英文
- 頁數: 70
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798223268512
- ISBN-13: 9798223268512
- 
    相關分類:
    
      Large language model
 
海外代購書籍(需單獨結帳)
買這商品的人也買了...
- 
                
                   $825Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build (Paperback) $825Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build (Paperback)
- 
                
                   圖解電池入門 圖解電池入門$280$238
- 
                
                   Mastering Windows 8 C++ App Development Mastering Windows 8 C++ App Development$1,800$1,710
- 
                
                   $352密碼學 (C\C++語言實現原書第2版) $352密碼學 (C\C++語言實現原書第2版)
- 
                
                   世界第一簡單電池 世界第一簡單電池$280$238
- 
                
                   $179基於 ARM Cortex-M3 的 STM32 微控制器實戰教程, 2/e $179基於 ARM Cortex-M3 的 STM32 微控制器實戰教程, 2/e
- 
                
                   Deploy Containers on Aws: With Ec2, Ecs, and Eks (Paperback) Deploy Containers on Aws: With Ec2, Ecs, and Eks (Paperback)$2,920$2,774
- 
                
                   AI 自動化測試:技術原理、平臺搭建與工程實踐 AI 自動化測試:技術原理、平臺搭建與工程實踐$534$507
- 
                
                   嵌入式系統設計 (基於STM32F4) 嵌入式系統設計 (基於STM32F4)$390$371
- 
                
                   $505深入淺出 Embedding:原理解析與應用實踐 $505深入淺出 Embedding:原理解析與應用實踐
- 
                
                   複利的喜悅:從價值投資到人生決策,啟發巴菲特、蒙格等投資典範的穩健致富金律 複利的喜悅:從價值投資到人生決策,啟發巴菲特、蒙格等投資典範的穩健致富金律$620$527
- 
                
                   $199嵌入式技術應用項目式教程(STM32版) $199嵌入式技術應用項目式教程(STM32版)
- 
                
                   Python for Cybersecurity: Using Python for Cyber Offense and Defense Python for Cybersecurity: Using Python for Cyber Offense and Defense$1,050$998
- 
                
                   Keras 大神歸位:深度學習全面進化!用 Python 實作 CNN、RNN、GRU、LSTM、GAN、VAE、Transformer Keras 大神歸位:深度學習全面進化!用 Python 實作 CNN、RNN、GRU、LSTM、GAN、VAE、Transformer$1,200$948
- 
                
                   Hands-On Visual Studio 2022: A developer's guide to exploring new features and best practices in VS2022 for maximum productivity (Paperback) Hands-On Visual Studio 2022: A developer's guide to exploring new features and best practices in VS2022 for maximum productivity (Paperback)$2,390$2,271
- 
                
                   $352基於 ARM Cortex-M3 的 STM32 嵌入式系統原理及應用 $352基於 ARM Cortex-M3 的 STM32 嵌入式系統原理及應用
- 
                
                   $232STM32 單片機原理與應用 $232STM32 單片機原理與應用
- 
                
                   四軸飛行器 DIY — 基於 STM32 微控制器 四軸飛行器 DIY — 基於 STM32 微控制器$234$222
- 
                
                   ChatGPT 與 AI繪圖效率大師:從日常到職場的全方位應用總整理,48小時迎接減壓新生活! ChatGPT 與 AI繪圖效率大師:從日常到職場的全方位應用總整理,48小時迎接減壓新生活!$620$484
- 
                
                   ChatGPT 領軍 DALL-E 2 + Midjourney + D-ID + Synthesia:邁向 AI文字、圖像、影片之路 (全彩印刷) ChatGPT 領軍 DALL-E 2 + Midjourney + D-ID + Synthesia:邁向 AI文字、圖像、影片之路 (全彩印刷)$500$395
- 
                
                   都問 AI 吧!ChatGPT 上手的第一本書 都問 AI 吧!ChatGPT 上手的第一本書$380$323
- 
                
                   $607巧學易用單片機 — 從零基礎入門到項目實戰 $607巧學易用單片機 — 從零基礎入門到項目實戰
- 
                
                   $301嵌入式技術及應用 (STM32CubeMX版) $301嵌入式技術及應用 (STM32CubeMX版)
- 
                
                   嵌入式設計與開發實訓指導 嵌入式設計與開發實訓指導$354$336
- 
                
                   高速省電 CPU 的未來 - STM32F103 嵌入式 Arm 系統專案實作 高速省電 CPU 的未來 - STM32F103 嵌入式 Arm 系統專案實作$1,000$790
商品描述
We are thrilled to announce the release of this eBook, "Retrieval-Augmented Generation (RAG): Empowering Large Language Models (LLMs)". This comprehensive exploration unveils RAG, a revolutionary approach in NLP that combines the power of neural language models with advanced retrieval systems.
In this must-read book, readers will dive into the architecture and implementation of RAG, gaining intricate details on its structure and integration with large language models like GPT. The authors also shed light on the essential infrastructure required for RAG, covering computational resources, data storage, and software frameworks.
One of the key highlights of this work is the in-depth exploration of retrieval systems within RAG. Readers will uncover the functions, mechanisms, and the significant role of vectorization and input comprehension algorithms. The book also delves into validation strategies, including performance evaluation, and compares RAG with traditional fine-tuning techniques in machine learning, providing a comprehensive analysis of their respective advantages and disadvantages.From improved integration and efficiency to enhanced scalability, RAG is set to bridge the gap between static language models and dynamic data, revolutionizing the fields of AI and NLP.
"Retrieval-Augmented Generation (RAG): Empowering Large Language Models (LLMs)" is a must-have resource for researchers, practitioners, and enthusiasts in the field of natural language processing. Get your copy today and embark on a transformative journey into the future of NLP.
 
 
     
     
     
     
     
     
     
     
     
     
     
    