Homogenisation of Laminated Metamaterials and the Inner Spectrum
暫譯: 層狀超材料的均質化與內部光譜

Waurick, Marcus

  • 出版商: Springer
  • 出版日期: 2025-10-04
  • 售價: $2,280
  • 貴賓價: 9.5$2,166
  • 語言: 英文
  • 頁數: 88
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3032019303
  • ISBN-13: 9783032019301
  • 相關分類: 數值分析 Numerical-analysis
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book investigates homogenisation problems for divergence form equations with rapidly sign-changing coefficients. Focusing on problems with piecewise constant, scalar coefficients in a (d-dimensional) crosswalk type shape, we will provide a limit procedure in order to understand potentially ill-posed and non-coercive settings.

Depending on the integral mean of the coefficient and its inverse, the limits can either satisfy the usual homogenisation formula for stratified media, be entirely degenerate or be a non-local differential operator of 4th order. In order to mark the drastic change of nature, we introduce the 'inner spectrum' for conductivities. We show that even though 0 is contained in the inner spectrum for all strictly positive periods, the limit inner spectrum can be empty. Furthermore, even though the spectrum was confined in a bounded set uniformly for all strictly positive periods and not containing 0, the limit inner spectrum might have 0 as an essential spectral point and accumulate at ∞ or even be the whole of C. This is in stark contrast to the classical situation, where it is possible to derive upper and lower bounds in terms of the values assumed by the coefficients in the pre-asymptotics.

Along the way, we also develop a theory for Sturm-Liouville type operators with indefinite weights, reduce the question on solvability of the associated Sturm-Liouville operator to understanding zeros of a certain explicit polynomial and show that generic real perturbations of piecewise constant coefficients lead to continuously invertible Sturm-Liouville expressions.

商品描述(中文翻譯)

本書探討具有快速變號係數的散度型方程的均質化問題。專注於具有分段常數標量係數的問題,這些係數呈現(d維)人行道型的形狀,我們將提供一個極限程序,以理解潛在的病態和非強制性設定。

根據係數及其逆的積分均值,極限可以滿足分層介質的通常均質化公式,完全退化,或是成為一個非局部的四階微分算子。為了標示性質的劇變,我們引入了導電率的「內部頻譜」。我們顯示,儘管0包含在所有嚴格正周期的內部頻譜中,但極限內部頻譜可能是空的。此外,儘管頻譜在所有嚴格正周期中均被限制在一個有界集合內且不包含0,但極限內部頻譜可能將0視為一個重要的頻譜點,並在無窮大處聚集,甚至可能是整個C。這與經典情況形成鮮明對比,在經典情況下,可以根據預漸近性中係數所取的值推導出上下界。

在此過程中,我們還發展了一種針對不定權重的Sturm-Liouville型算子的理論,將相關Sturm-Liouville算子的可解性問題簡化為理解某個顯式多項式的零點,並顯示分段常數係數的通用實擾動導致連續可逆的Sturm-Liouville表達式。

作者簡介

Marcus Waurick graduated in Mathematics with minor in Physics at TU Dresden in 2009. During his first employment at the Faculty of Civil Engineering, he finished his PhD in 2011 on homogenisation theory and accepted a position at the Institute for Analysis at TU Dresden later that year. In 2015, he took up a research post at the University of Bath, and in 2016, he completed his habilitation thesis. The following year, he became Chancellor's Fellow at the University of Strathclyde where he was honored with the Research Excellence Award in 2018. In 2020, he accepted a position at TU Hamburg as research associate, and in November of the same year, he became deputy professor at TU Bergakademie Freiberg. Since April 2021, he has been a University Professor at TU Bergakademie Freiberg and held the chair for Partial Differential Equations. He has contributed to more than 70 research articles and 3 books, with his work spanning partial differential equations, evolutionary equations, operator theory, numerical analysis, homogenisation, control theory, and functional analysis.

作者簡介(中文翻譯)

馬庫斯·瓦里克 (Marcus Waurick) 於2009年在德累斯頓工業大學 (TU Dresden) 獲得數學學位,並輔修物理學。在他於土木工程系的第一份工作中,他於2011年完成了有關均質化理論的博士學位,並在同年接受了德累斯頓工業大學分析研究所的職位。2015年,他在巴斯大學 (University of Bath) 擔任研究職位,並於2016年完成了他的晉升論文。隨後一年,他成為斯特拉斯克萊德大學 (University of Strathclyde) 的校長研究員,並於2018年獲得研究卓越獎。2020年,他接受了漢堡工業大學 (TU Hamburg) 的研究助理職位,並在同年11月成為弗賴貝格礦業學院 (TU Bergakademie Freiberg) 的副教授。自2021年4月以來,他一直是弗賴貝格礦業學院的大學教授,並擔任偏微分方程的講座教授。他已發表超過70篇研究文章和3本書籍,研究範疇涵蓋偏微分方程、演化方程、算子理論、數值分析、均質化、控制理論和泛函分析。