Human Bias in Visual Data Analysis: A Synthesis of Research to Empower Decision Makers
暫譯: 視覺數據分析中的人類偏見:研究綜合以賦能決策者

Wall, Emily

  • 出版商: Springer
  • 出版日期: 2026-01-13
  • 售價: $2,770
  • 貴賓價: 9.5$2,632
  • 語言: 英文
  • 頁數: 229
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3032093066
  • ISBN-13: 9783032093066
  • 相關分類: Data-visualization
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This open access book demonstrates how human biases affect the process of visual data analysis, a subject which has typically been left to researchers in cognitive and perceptual psychology and the social sciences. Human biases affect the way that people interpret and experience the world and how they operate within it and make decisions. These can include cognitive biases such as confirmation or anchoring bias, perceptual biases including visual or auditory illusions, and implicit biases such as racial or gender bias that are often borne of harmful cultural norms and stereotypes. In the context of visual data analysis, this book explores (1) what these biases are, (2) how to characterize them, and (3) how to mitigate them through designing digital interventions. This book synthesizes years of work on detecting and mitigating biases in visual data analysis and project directions for the next decade of research and practice. It represents an accessible entry point to understanding the prevalence of biases in computing before taking readers on a deeper dive into empirical studies on the efficacy of various bias mitigation interventions. It will synthesize years of research into a digestible portal to technical work on visual data analysis. Data scientists and citizens alike can benefit from this book by reflecting on their own unique privileges and susceptibility to biases and scrutinizing how digital interventions, sometimes as simple as adding one extra step to verify the decision by checking "yes," might be integrated or enacted in their own personal and professional decision making settings.

商品描述(中文翻譯)

這本開放存取的書籍展示了人類偏見如何影響視覺數據分析的過程,這一主題通常由認知與知覺心理學及社會科學的研究者來探討。人類偏見影響人們解釋和體驗世界的方式,以及他們在其中的運作和決策。這些偏見可能包括認知偏見,如確認偏見或錨定偏見,知覺偏見,包括視覺或聽覺錯覺,以及隱性偏見,如種族或性別偏見,這些偏見往往源於有害的文化規範和刻板印象。在視覺數據分析的背景下,本書探討了(1)這些偏見是什麼,(2)如何對其進行特徵描述,以及(3)如何通過設計數位干預來減輕這些偏見。本書綜合了多年在視覺數據分析中檢測和減輕偏見的研究成果,並為未來十年的研究和實踐提供了項目方向。它代表了一個易於理解的切入點,幫助讀者了解計算領域中偏見的普遍性,然後深入探討各種偏見減輕干預的實證研究。這本書將多年研究綜合成一個易於消化的入口,讓讀者接觸到視覺數據分析的技術工作。數據科學家和公民都可以從這本書中受益,反思自己獨特的特權和對偏見的易感性,並仔細檢視數位干預如何在他們的個人和專業決策環境中整合或實施,有時這些干預可能僅僅是增加一個額外的步驟來通過檢查「是」來驗證決策。

作者簡介

Dr. Emily Wall is an Assistant Professor of Computer Science at Emory University where she directs the Cognition and Visualization (CAV) Lab. She and her students work on problems that involve decision making using visual data analysis, including developing computational strategies to characterize human limitations in decision making (e.g., cognitive bias) and designing and building interventions that promote reflective data analysis and decision making practices. She completed her Ph.D. in Computer Science at Georgia Tech in 2020, then completed a postdoctoral fellowship at Northwestern University. Her dissertation work was recognized with an honorable mention for Best Dissertation by the Visualization and Graphics Technical Community (TVCG). Her work has since been funded by the National Science Foundation, including a CAREER award for her work on "Promoting Metacognition in Visual Analytics."

作者簡介(中文翻譯)

艾蜜莉·沃爾博士(Dr. Emily Wall)是埃默里大學(Emory University)計算機科學的助理教授,並且負責認知與視覺化實驗室(Cognition and Visualization, CAV Lab)。她和她的學生專注於使用視覺數據分析進行決策的問題,包括開發計算策略以描述人類在決策中的限制(例如,認知偏誤),以及設計和建構促進反思性數據分析和決策實踐的介入措施。她於2020年在喬治亞理工學院(Georgia Tech)獲得計算機科學博士學位,隨後在西北大學(Northwestern University)完成了博士後研究。她的論文工作曾獲得視覺化與圖形技術社群(TVCG)最佳論文的榮譽提名。此後,她的研究工作獲得了美國國家科學基金會的資助,包括針對她在「促進視覺分析中的後設認知」方面工作的CAREER獎。